SCALE-INVARIANT MULTIPLIER DISTRIBUTIONS IN TURBULENCE

被引:74
作者
CHHABRA, AB
SREENIVASAN, KR
机构
[1] UNIV CHICAGO,CTR MATH DISCIPLINES,CHICAGO,IL 60637
[2] UNIV CHICAGO,JAMES FRANCK INST,CHICAGO,IL 60637
关键词
D O I
10.1103/PhysRevLett.68.2762
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A family of scale-invariant, base-dependent, multiplier distributions is measured for the turbulence dissipation field in the atmospheric surface layer. The existence of these distributions implies the existence of the more traditional multifractal scaling functions, and we compute both positive and negative parts of the f(alpha) curve. The results support the conjecture of universality in the scaling properties of small-scale turbulence. A simple cascade model based on the measured multiplier distributions is shown to possess several advantages over previously considered models.
引用
收藏
页码:2762 / 2765
页数:4
相关论文
共 30 条
[1]   ON THE MULTIFRACTAL NATURE OF FULLY-DEVELOPED TURBULENCE AND CHAOTIC SYSTEMS [J].
BENZI, R ;
PALADIN, G ;
PARISI, G ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18) :3521-3531
[2]   DIFFUSION NEAR ABSORBING FRACTALS - HARMONIC MEASURE EXPONENTS FOR POLYMERS [J].
CATES, ME ;
WITTEN, TA .
PHYSICAL REVIEW A, 1987, 35 (04) :1809-1824
[3]   DIRECT DETERMINATION OF THE F(ALPHA) SINGULARITY SPECTRUM [J].
CHHABRA, A ;
JENSEN, RV .
PHYSICAL REVIEW LETTERS, 1989, 62 (12) :1327-1330
[4]   NEGATIVE DIMENSIONS - THEORY, COMPUTATION, AND EXPERIMENT [J].
CHHABRA, AB ;
SREENIVASAN, KR .
PHYSICAL REVIEW A, 1991, 43 (02) :1114-1117
[5]   EXTRACTION OF UNDERLYING MULTIPLICATIVE PROCESSES FROM MULTIFRACTALS VIA THE THERMODYNAMIC FORMALISM [J].
CHHABRA, AB ;
JENSEN, RV ;
SREENIVASAN, KR .
PHYSICAL REVIEW A, 1989, 40 (08) :4593-4611
[6]  
CHHABRA AB, 1991, NEW PERSPECTIVES TUR
[7]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[8]  
EVERTSZ CJG, UNPUB
[9]   SCALING SPECTRA AND RETURN TIMES OF DYNAMIC-SYSTEMS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1987, 46 (5-6) :925-932
[10]  
FEIGENBAUM MJ, 1978, J STAT PHYS, V25, P669