ON CONVEX-FUNCTIONS HAVING POINTS OF GATEAUX DIFFERENTIABILITY WHICH ARE NOT POINTS OF FRECHET DIFFERENTIABILITY

被引:23
作者
BORWEIN, JM
FABIAN, M
机构
[1] UNIV WATERLOO, DEPT COMBINATOR & OPTIMIZAT, WATERLOO N2L 3G1, ONTARIO, CANADA
[2] CZECH TECH UNIV, FAC MACHINE ENGN, CS-12800 PRAGUE 2, CZECHOSLOVAKIA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1993年 / 45卷 / 06期
关键词
GATEAUX DIFFERENTIABILITY; FRECHET DIFFERENTIABILITY; WEAK HADAMARD DIFFERENTIABILITY; (NOT)CONTAINING L1; RENORMING; WEAK-ASTERISK KADEC PROPERTY; CONVEX FUNCTIONS; NONCOMPACT OPERATORS;
D O I
10.4153/CJM-1993-062-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the relationships between Gateaux, Frechet and weak Hadamard differentiability of convex functions and of equivalent norms. As a consequence we provide related characterizations of infinite dimensional Banach spaces and of Banach spaces containing l1BAR. Explicit examples are given. Some renormings of WCG Asplund spaces are made in this vein.
引用
收藏
页码:1121 / 1134
页数:14
相关论文
共 19 条
[1]  
BORWEIN JM, 1992, CORR9204 U WAT TECHN
[2]  
BORWEIN JM, IN PRESS CANAD MATH
[3]  
BORWEIN JM, ASPLUND SPACES SEQUE
[4]  
Deville R., 1993, PITMAN MONOGRAPHS SU, V64
[5]  
DIESTEL J, 1984, SEQUENCES SERIES BAN
[6]  
Diestel J., 1975, LECT NOTES MATH, V485
[7]  
Emmanuele G., 1986, B POLISH ACAD SCI MA, V34, P155
[8]   GEOMETRICAL IMPLICATIONS OF CERTAIN INFINITE DIMENSIONAL DECOMPOSITIONS [J].
GHOUSSOUB, N ;
MAUREY, B ;
SCHACHERMAYER, W .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 317 (02) :541-584
[9]   A COUNTEREXAMPLE TO SEVERAL QUESTIONS ABOUT SCATTERED COMPACT SPACES [J].
HAYDON, R .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 :261-268
[10]  
KADETS MI, 1965, STUD MATH, V25, P297