FUNCTIONAL-DERIVATIVE STUDY OF THE HUBBARD-MODEL .3. FULLY RENORMALIZED GREENS-FUNCTION

被引:9
作者
ARAI, T
COHEN, MH
机构
来源
PHYSICAL REVIEW B | 1980年 / 21卷 / 08期
关键词
D O I
10.1103/PhysRevB.21.3300
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:3300 / 3308
页数:9
相关论文
共 18 条
[1]  
Abrikosov A. A., 1963, METHODS QUANTUM FIEL
[2]   FUNCTIONAL-DERIVATIVE STUDY OF HUBBARD-MODEL .1. PERTURBATION METHOD AND 1ST-ORDER APPROXIMATION [J].
ARAI, T ;
COHEN, MH ;
TOSI, MP .
PHYSICAL REVIEW B, 1977, 15 (04) :1817-1835
[3]   FUNCTIONAL-DERIVATIVE STUDY OF HUBBARD-MODEL .2. SELF-CONSISTENT EQUATION AND ITS COMPLETE SOLUTION [J].
ARAI, T ;
COHEN, MH .
PHYSICAL REVIEW B, 1977, 15 (04) :1836-1849
[4]   QUASIPARTICLE EXCITATIONS, THE RELAXATION, AND TRANSPORT-PROPERTIES IN THE NARROW-BAND REGION OF THE HUBBARD-MODEL [J].
ARAI, T .
PHYSICAL REVIEW B, 1980, 21 (08) :3320-3333
[5]   STABILITY OF THE SPLIT-BAND SOLUTION AND ENERGY-GAP IN THE NARROW-BAND REGION OF THE HUBBARD-MODEL [J].
ARAI, T ;
COHEN, MH .
PHYSICAL REVIEW B, 1980, 21 (08) :3309-3319
[6]  
ARAI T, UNPUBLISHED
[7]   CONSERVATION LAWS AND CORRELATION FUNCTIONS [J].
BAYM, G ;
KADANOFF, LP .
PHYSICAL REVIEW, 1961, 124 (02) :287-+
[8]   SELF-CONSISTENT APPROXIMATIONS IN MANY-BODY SYSTEMS [J].
BAYM, G .
PHYSICAL REVIEW, 1962, 127 (04) :1391-&