QUADRATIC CONTROL-SYSTEMS

被引:16
作者
BONNARD, B
机构
[1] Laboratoire d'Automatique de Grenoble, URA CNRS 228, E.N.S.I.E.G.-I.N.P.G., Saint Martin D'Heres, 38402
关键词
POLYNOMIAL SYSTEMS; MINIMAL REALIZATION; FEEDBACK CLASSIFICATION; INVARIANT THEORY;
D O I
10.1007/BF02551263
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We outline a geometric theory for a class of homogeneous polynomial control systems called quadratic systems. We describe an algorithm to compute a minimal realization and study the feedback classification problem. Feedback invariants are related to the singularities of the input-output mapping and canonical forms are exhibited.
引用
收藏
页码:139 / 160
页数:22
相关论文
共 24 条
[1]  
Baillieul J., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P879, DOI 10.1016/0362-546X(80)90002-4
[2]  
BAILLIEUL J, 1981, NONLINEAR ANAL, V4, P543
[3]  
Bartosiewicz Z., 1986, Theory and Applications of Nonlinear Control Systems, P293
[4]  
BONNARD B, 1982, THESIS INPG USMG GRE
[5]  
BONNARD B, 1987, 26TH P IEEE C DEC CO, P146
[6]  
BONNARD B, IN PRESS SIAM J CONT
[7]  
BONNARD B, 1987, CONTRIBUTION ETUDE P
[8]  
BOURBAKI N, 1971, GROUPES ALGEBRES LIE, pCH2
[9]  
Carrell JB, 1971, INVARIANT THEORY OLD
[10]   DYNAMICAL REALIZATIONS OF FINITE VOLTERRA SERIES [J].
CROUCH, PE .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1981, 19 (02) :177-202