Since information about possible regional differences in the innervation of the guinea-pig large intestine is incomplete, a comparative study was made of the occurrence of neurones and nerve fibres of the submucosa showing immunoreactivity (IR) to neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP). In addition, a quantitative analysis was made of submucosal neurones in regions of guinea-pig large intestine selected for probable differences in their function. There were two principal findings: First, the density of NPY-IR neurone somata was high in the ascending colon (mean +/- SEM 3148 +/- 464 neurones/cm(2); n = 5 animals) and progressively declined in an anal direction, the descending colon having 348 +/- 125 neurones/cm(2) (in the same 5 animals); immunoreactive cell bodies were rare in the rectum. The reduced density was also reflected in a fall in the number of NPY-IR neurones/ganglion from 3.0 +/- 0.3 in the ascending colon to 0.5 +/- 0.2 in the descending colon. Second, varicose NPY-IR intraganglionic fibres were a conspicuous feature of the duodenum, caecum, transverse colon, descending colon and rectum, but not of the ileum, ascending colon or distal spiral. Moreover, in the descending colon and rectum the fibres were arranged in a loose 'cobweb' structure around non-NPY-IR neurone somata; in the caecum, there was an apparent paucity of NPY-IR somata but the exceptionally dense intraganglionic varicose fibre network may have obscured NPY-IR somata. In all regions, fibre baskets were rare. In the ascending colon, only 25 +/-: 5% of ganglia (compared to 92 +/- 2% of ganglia in the descending colon) showed any intraganglionic nerve fibres; furthermore, when they occurred, these were not of the 'cobweb' type but, rather, they gave,the ganglia a speckled appearance. In very immature fetuses at a stage of development when no neuropeptide somata could be found in either the myenteric or submucosal plexuses, many NPY-IR nerve fibres were present in the submucosa with a distribution similar to that of adult guinea pigs. With respect to the density of VIP-IR neurones in the large intestine, there was only a 40% reduction in the number of neurones/cm(2) from proximal to distal colon, in contrast to the corresponding 90% reduction in the density of NPY-IR neurones. The number of VIP-IR neurones/ganglion (6.4) and the proportion of ganglia with VIP-IR fibres (> 90%) were constant. It is concluded that the striking regional dissimilarities in (i) the occurrence of NPY-IR neurone somata and (ii) in the disposition of intraganglionic NPY-IR nerve fibres indicate potentially important regional differences in the functions of neuropeptide Y as an antisecretory peptide in the local regulation of chloride transport in the mucosa and as a modulator of ganglionic transmission, respectively.