H AND H-P VERSION ERROR ESTIMATION AND ADAPTIVE PROCEDURES FROM THEORY TO PRACTICE

被引:14
作者
CRAIG, AW
AINSWORTH, M
ZHU, JZ
ZIENKIEWICZ, OC
机构
[1] UNIV LANCASTER,DEPT MATH,LANCASTER LA1 4YW,ENGLAND
[2] UNIV COLL SWANSEA,DEPT CIVIL ENGN,SWANSEA SA2 8PP,W GLAM,WALES
关键词
D O I
10.1007/BF02274214
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we introduce techniques that allow us to define a posterior error estimators via well-known recovery techniques. These allow us to construct a posteriori error estimators for relatively general problems. Further, we introduce new adaptive procedures that make use of these estimators and, in particular, describe an h-p procedure that is simple to implement and that, as numerical experiments have shown, attains an accelerated rate of convergence expected from the h-p version.
引用
收藏
页码:221 / 234
页数:14
相关论文
共 32 条
[1]   ANALYSIS OF THE ZIENKIEWICZ-ZHU A-POSTERIORI ERROR ESTIMATOR IN THE FINITE-ELEMENT METHOD [J].
AINSWORTH, M ;
ZHU, JZ ;
CRAIG, AW ;
ZIENKIEWICZ, OC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1989, 28 (09) :2161-2174
[2]  
AINSWORTH M, 1989, NA8902 DURH U NUM AN
[3]  
AINSWORTH M, 1989, UNPUB NUMER MATH
[4]   THE H-P VERSION OF THE FINITE-ELEMENT METHOD FOR DOMAINS WITH CURVED BOUNDARIES [J].
BABUSKA, I ;
GUO, BQ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (04) :837-861
[5]   THE OPTIMAL CONVERGENCE RATE OF THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SURI, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :750-776
[6]   THE PROBLEM OF SELECTING THE SHAPE FUNCTIONS FOR A P-TYPE FINITE-ELEMENT [J].
BABUSKA, I ;
GRIEBEL, M ;
PITKARANTA, J .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1989, 28 (08) :1891-1908
[7]  
BABUSKA I, IN PRESS EFFICIENT P
[8]  
BABUSKA I, 1987, NUMER MATH, V27, P257
[9]  
BABUSKA I, 1981, SIAM J NUMER ANAL, V18, P512
[10]  
Craig A.W., 1984, MATH FINITE ELEMENTS, P587