WEIGHTED SOBOLEV INEQUALITIES AND HARMONIC MEASURE ASSOCIATED WITH QUASI-REGULAR FUNCTIONS

被引:1
作者
OKSENDAL, B
机构
[1] Dept. of Mathematics, University of Oslo, 1053, Blindern
关键词
D O I
10.1080/03605309908820732
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A weighted Sobolev inequality in Rn of the form [formula ommited] is established Jϕ being the Jacobian determinant of a quasiregular function ϕ on a bounded domain U ⊂ Rn. This is used to prove the existence of the harmonic measure of the diffusion Xt associated to ϕ. As an application a new result about boundary values of quasiregular functions is proved. © 1990, Taylor & Francis Group, LLC. All rights reserved.
引用
收藏
页码:1447 / 1459
页数:13
相关论文
共 11 条
[1]  
Bergh J., 1976, INTERPOLATION SPACES, V223
[2]   THE WIENER TEST FOR DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, E ;
JERISON, D ;
KENIG, C .
ANNALES DE L INSTITUT FOURIER, 1982, 32 (03) :151-182
[3]  
Fabes E.B., 1983, WADSWORTH MATHSER, VI, P577
[4]   THE LOCAL REGULARITY OF SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, EB ;
KENIG, CE ;
SERAPIONI, RP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (01) :77-116
[5]  
FUKUSHIMA M., 1980, N HOLLAND MATH LIB, V23
[6]  
Martio O., 1972, ANN ACAD SCI FENN-M, V507, P1
[7]   DIRICHLET FORMS, QUASIREGULAR FUNCTIONS AND BROWNIAN-MOTION [J].
OKSENDAL, B .
INVENTIONES MATHEMATICAE, 1988, 91 (02) :273-297
[8]  
VAISALA L, 1978, P ICM HELSINKI
[9]  
Williams D., 1979, DIFFUSIONS MARKOV PR, V1
[10]  
[No title captured]