NEW UNIVERSALITY CLASSES IN PERCOLATIVE DYNAMICS

被引:5
作者
ORTUNO, M [1 ]
RUIZ, J [1 ]
GUNN, JMF [1 ]
机构
[1] RUTHERFORD APPLETON LAB,DIDCOT OX11 0QX,OXON,ENGLAND
关键词
PERCOLATION; EXTERNAL PERIMETER; UNIVERSALITY; CRITICAL EXPONENTS; THRESHOLD;
D O I
10.1007/BF01053739
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a site analogue of directed percolation. Random trajectories are generated and their critical behavior is studied. The critical behavior corresponds to that of simple percolation in some of the parameter space, but elsewhere the exponents reveal new universality classes. As a byproduct, we use the model to make an improved estimate of the percolation hull exponents and to calculate the site percolation probability for the square lattice.
引用
收藏
页码:453 / 467
页数:15
相关论文
共 22 条
[1]  
BOLOGUROV BY, 1986, FIZ TVERD TELA+, V28, P1694
[2]   EXACT THETA-POINT AND EXPONENTS FOR 2 MODELS OF POLYMER-CHAINS IN 2 DIMENSIONS [J].
BRADLEY, RM .
PHYSICAL REVIEW A, 1990, 41 (02) :914-922
[3]  
DOROGOSTEV SN, 1986, FIZ TVERD TELA+, V28, P1699
[4]   HULL PERCOLATION AND STANDARD PERCOLATION [J].
DUPLANTIER, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (20) :3969-3973
[5]   SITE PERCOLATION-THRESHOLD FOR SQUARE LATTICE [J].
GEBELE, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (02) :L51-L54
[6]   ON THE HULL OF TWO-DIMENSIONAL PERCOLATION CLUSTERS [J].
GRASSBERGER, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (13) :2675-2677
[7]  
Grimmett G., 1989, PERCOLATION
[8]  
GUNN JMF, 1985, J PHYS A-MATH GEN, V18, P1095
[9]  
HEMMER S, 1984, J CHEM PHYS, V81, P584, DOI 10.1063/1.447349
[10]   THE GROWING SELF AVOIDING WALK [J].
LYKLEMA, JW ;
KREMER, K .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (13) :L691-L696