PHOTOSYSTEM-II REGULATION AND DYNAMICS OF THE CHLOROPLAST D1 PROTEIN IN ARABIDOPSIS LEAVES DURING PHOTOSYNTHESIS AND PHOTOINHIBITION

被引:112
作者
RUSSELL, AW
CRITCHLEY, C
ROBINSON, SA
FRANKLIN, LA
SEATON, GGR
CHOW, WS
ANDERSON, JM
OSMOND, CB
机构
[1] UNIV QUEENSLAND, DEPT BOT, ST LUCIA, QLD 4072, AUSTRALIA
[2] AUSTRALIAN NATL UNIV, RES SCH BIOL SCI, CANBERRA, ACT 2601, AUSTRALIA
[3] AUSTRALIAN NATL UNIV, COOPERAT RES CTR PLANT SCI, INST ADV STUDIES, CANBERRA, ACT 2601, AUSTRALIA
[4] CSIRO, DIV PLANT IND, CANBERRA, ACT 2601, AUSTRALIA
关键词
D O I
10.1104/pp.107.3.943
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arabidopsis thaliana leaves were examined in short-term (1 h) and long-term (10 h) irradiance experiments involving growth, saturating and excess light. Changes in photosynthetic and chlorophyll fluorescence parameters and in populations of functional photosystem II (PSII) centers were independently measured. Xanthophyll pigments, 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-binding sites, the amounts of D1 protein, and the rates of D1 protein synthesis were determined. These comprehensive studies revealed that under growth or light-saturating conditions, photosynthetic parameters remained largely unaltered. Photoprotection occurred at light saturation indicated by a dark-reversible increase in nonphotochemical quenching accompanied by a 5-fold increase in antheraxanthin and zeaxanthin. No consistent change in the concentrations of functional PSII centers, DCMU-binding sites, or D1 protein pool size occurred. D1 protein synthesis was rapid. In excess irradiance, quantum yield of O-2 evolution and the efficiency of PSII were reduced, associated with a 15- to 20-fold increase in antheraxanthin and zeaxanthin and a sustained increase in nonphotochemical quenching. A decrease in functional PSII center concentration occurred, followed by a decline in the concentration of D1 protein; the latter, however, was not matched by a decrease in DCMU-binding sites. In the most extreme treatments, DCMU-binding site concentration remained 2 times greater than the concentration of D1 protein recognized by antibodies. D1 protein synthesis rates remained unaltered at excess irradiances.
引用
收藏
页码:943 / 952
页数:10
相关论文
共 49 条
[1]   GRANA STACKING AND PROTECTION OF PHOTOSYSTEM-II IN THYLAKOID MEMBRANES OF HIGHER-PLANT LEAVES UNDER SUSTAINED HIGH IRRADIANCE - AN HYPOTHESIS [J].
ANDERSON, JM ;
ARO, EM .
PHOTOSYNTHESIS RESEARCH, 1994, 41 (02) :315-326
[2]   PHOTOINHIBITION AND D1 PROTEIN-DEGRADATION IN PEAS ACCLIMATED TO DIFFERENT GROWTH IRRADIANCES [J].
ARO, EM ;
MCCAFFERY, S ;
ANDERSON, JM .
PLANT PHYSIOLOGY, 1993, 103 (03) :835-843
[3]   PHOTOINHIBITION OF PHOTOSYSTEM-2 - INACTIVATION, PROTEIN DAMAGE AND TURNOVER [J].
ARO, EM ;
VIRGIN, I ;
ANDERSSON, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1143 (02) :113-134
[4]  
BAKER NR, 1987, PHOTOINHIBITION, P145
[5]   TOO MUCH OF A GOOD THING - LIGHT CAN BE BAD FOR PHOTOSYNTHESIS [J].
BARBER, J ;
ANDERSSON, B .
TRENDS IN BIOCHEMICAL SCIENCES, 1992, 17 (02) :61-66
[6]   ROLE OF THE XANTHOPHYLL CYCLE IN PHOTOPROTECTION ELUCIDATED BY MEASUREMENTS OF LIGHT-INDUCED ABSORBENCY CHANGES, FLUORESCENCE AND PHOTOSYNTHESIS IN LEAVES OF HEDERA-CANARIENSIS [J].
BILGER, W ;
BJORKMAN, O .
PHOTOSYNTHESIS RESEARCH, 1990, 25 (03) :173-185
[7]   ENERGY-DEPENDENT QUENCHING OF DARK-LEVEL CHLOROPHYLL FLUORESCENCE IN INTACT LEAVES [J].
BILGER, W ;
SCHREIBER, U .
PHOTOSYNTHESIS RESEARCH, 1986, 10 (03) :303-308
[8]  
Bjorkman O, 1987, PHOTOINHIBITION, P123
[9]  
BRADBURY M, 1986, PLANT CELL ENVIRON, V9, P289, DOI 10.1111/1365-3040.ep11611692
[10]   FURTHER-STUDIES ON QUANTIFYING PHOTOSYSTEM-II INVIVO BY FLASH-INDUCED OXYGEN YIELD FROM LEAF-DISKS [J].
CHOW, WS ;
HOPE, AB ;
ANDERSON, JM .
AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1991, 18 (04) :397-410