INTEGRABILITY AND IDEAL CONDUCTANCE AT FINITE TEMPERATURES

被引:212
作者
CASTELLA, H
ZOTOS, X
PRELOVSEK, P
机构
[1] UNIV GENEVA,DEPT PHYS MAT CONDENSEE,CH-1211 GENEVA,SWITZERLAND
[2] UNIV LJUBLJANA,JOZEF STEFAN INST,LJUBLJANA 61111,SLOVENIA
关键词
D O I
10.1103/PhysRevLett.74.972
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the finite temperature charge stiffness D(T>0), using a generalization of Kohn's method, for the problem of a particle interacting with a fermionic bath in one dimension. We present analytical evidence, using the Bethe ansatz method, that D(T>0) is finite in the integrable case where the mass of the particle equals the mass of the fermions and numerical evidence that it vanishes in the nonintegrable case of unequal masses. We conjecture that a finite D(T>0) is a generic property of integrable systems. © 1995 The American Physical Society.
引用
收藏
页码:972 / 975
页数:4
相关论文
共 21 条
[1]   LANDAU PARAMETERS OF ALMOST-LOCALIZED FERMI LIQUIDS [J].
BAERISWYL, D ;
GROS, C ;
RICE, TM .
PHYSICAL REVIEW B, 1987, 35 (16) :8391-8395
[2]  
BRINKMAN B, 1970, PHYS REV B, V2, P6880
[3]   EXACT CALCULATION OF SPECTRAL PROPERTIES OF A PARTICLE INTERACTING WITH A ONE-DIMENSIONAL FERMIONIC SYSTEM [J].
CASTELLA, H ;
ZOTOS, X .
PHYSICAL REVIEW B, 1993, 47 (24) :16186-16193
[4]  
DISTASIO M, IN PRESS
[5]  
EMERY VJ, 1979, HIGHLY CONDUCTING ON, P247
[6]   UMKLAPP PROCESS AND RESISTIVITY IN ONE-DIMENSIONAL FERMION SYSTEMS [J].
GIAMARCHI, T .
PHYSICAL REVIEW B, 1991, 44 (07) :2905-2913
[7]   LANCZOS METHOD FOR THE CALCULATION OF FINITE-TEMPERATURE QUANTITIES IN CORRELATED SYSTEMS [J].
JAKLIC, J ;
PRELOVSEK, P .
PHYSICAL REVIEW B, 1994, 49 (07) :5065-5068
[8]  
Kohn W., 1965, PHYS REV A, V133, P171
[10]   ABSENCE OF MOTT TRANSITION IN AN EXACT SOLUTION OF SHORT-RANGE 1-BAND MODEL IN 1 DIMENSION [J].
LIEB, EH ;
WU, FY .
PHYSICAL REVIEW LETTERS, 1968, 20 (25) :1445-+