OPTIMAL COMBINATIONS OF PATTERN CLASSIFIERS

被引:185
作者
LAM, L
SUEN, CY
机构
[1] Centre for Pattern Recognition and Machine Intelligence, Concordia University, Montreal, Que. H3G 1M8, Suite GM-606
关键词
MULTIPLE CLASSIFIER SYSTEMS; OCR; MAJORITY VOTE; GENETIC ALGORITHM; BAYESIAN METHOD;
D O I
10.1016/0167-8655(95)00050-Q
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To improve recognition results, decisions of multiple classifiers can be combined. We study the performance of combination methods that are variations of the majority vote. A Bayesian formulation and a weighted majority vote (with weights obtained through a genetic algorithm) are implemented, and the combined performances of 7 classifiers on a large set of handwritten numerals are analyzed.
引用
收藏
页码:945 / 954
页数:10
相关论文
共 16 条
[1]  
FRANKE J, 1992, 11TH IAPR INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, PROCEEDINGS, VOL II, P611
[2]  
GADER PD, 1990, P US POST SERV ADV T, P539
[3]  
HO TK, 1994, IEEE T PATTERN ANAL, V16, P66, DOI 10.1109/34.273716
[4]  
Holland J., 1989, GENETIC ALGORITHMS S
[5]  
HOLLAND JH, 1975, ADAPTATION NATURAL A
[6]  
HUANG YS, 1993, 3 INT WORKSH FRONT H, P11
[7]  
LAM L, 1994, 12TH P INT C PATT RE, V2, P418
[8]  
LAM L, 1994, 4TH P INT WORKSH FRO, P245
[9]  
LEE D, 1993, 3 INT WORKSH FRONT H, P153
[10]  
LIU K, 1994, P SIE C NEURAL STOCH, V3, P210