Secondary O-18 isotope effects in the gamma-position of ATP have been measured on phosphoryl transfer catalyzed by yeast hexokinase in an effort to deduce the structure of the transition state. The isotope effects were measured by the remote-label method with the exocyclic amino group of adenine as the remote label. With glucose as substrate, the secondary O-18 isotope effect per O-18 was 0.9987 at pH 8.2 and 0.9965 at pH 5.3, which is below the pK of 6.15 seen in the V/K profile for MgATP. With the slow substrate 1,5-anhydro-D-glucitol, the value was 0.9976 at pH 8.2. While part of the inverse nature of the isotope effect may result from an isotope effect on binding, the more inverse values when catalysis is made more rate limiting by decreasing the pH or switching to a slower substrate suggest a dissociative transition state for phosphoryl transfer, in agreement with predictions from model chemistry. The O-18 equilibrium isotope effect for deprotonation of HATP3- is 1.0156, while Mg2+ coordination to ATP4- does not appear to be accompanied by an O-18 isotope effect larger than 1.001.