WORST CASE BEHAVIOR OF THE STEEPEST EDGE SIMPLEX-METHOD

被引:32
作者
GOLDFARB, D
SIT, WY
机构
[1] The City College, the City University of New York, New York
关键词
D O I
10.1016/0166-218X(79)90004-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
At each nondegenerate iteration of the steepest-edge simplex method one moves from a vertex of the polyhedron, P, of feasible points to an adjacent vertex along an edge that is steepest with respect to the linear objective function ψ. In this paper we show how to construct a sequence of linear programs (Pn,ψn) in n variables for which the number of iterations required by the steepest edge simplex method is 2n-1. © 1979.
引用
收藏
页码:277 / 285
页数:9
相关论文
共 5 条
[1]  
AVIS D, 1978, MATH PROGRAM STUD, V8, P24, DOI 10.1007/BFb0121192
[2]   PRACTICABLE STEEPEST-EDGE SIMPLEX ALGORITHM [J].
GOLDFARB, D ;
REID, JK .
MATHEMATICAL PROGRAMMING, 1977, 12 (03) :361-371
[3]  
Jeroslow R. G., 1973, Discrete Mathematics, V4, P367, DOI 10.1016/0012-365X(73)90171-4
[4]  
Klee V., 1972, INEQUALITIES, V3, P159
[5]  
KUHN H, 1963, AMS P S APPL MATH, V15, P107