The specific cellular localization of prostaglandin endoperoxide (PGH) synthase, the enzyme responsible for initiating the conversion of arachidonic acid to prostaglandins, was studied throughout pseudopregnancy in the rat. Pseudopregnancy was induced by administration of eCG (20 IU) to immature, 27-day-old rats followed by hCG injection (10 IU) on Day 29. Animals were necropsied on Days 1 (Day 1 = 1 day post hCG), 5, 9, and 13 of pseudopregnancy. Ovaries were removed and processed for cellular identification of PGH synthase by immunohistochemistry. Immunoreactive PGH synthase was distributed throughout the CL at each of the 4 different days of pseudopregnancy, with the majority of the luteal cells exhibiting varying degrees of staining. The connective tissue centrum of the CL, however, lacked PGH synthase immunoreactivity. Quantitative assessment of the immunostaining distribution was accomplished with a computer-based image analysis program (Kontron IBAS). Results are expressed as the percentage of a digitized luteal area that contained intense immunoreactive staining. There was an increase (p < 0.001) in the percent area within the CL that contained PGH synthase immunoreactivity between Day 1 (0.6 +/- 0.2% immunoreactive area) and Day 5 (16.8 +/- 2.7%) of pseudopregnancy. The area of luteal immunostaining was similar on Day 5 and Day 9 (16.8 +/- 2.7% and 14.7 +/- 2.0%, respectively) followed by a decrease (p < 0.05) in immunoreactivity on Day 13 (9.1 +/- 2.2%). The region of the CL adjacent to the germinal epithelium had an increase (p < 0.01) in PGH synthase staining distribution compared to the region of the CL adjacent to the ovarian medulla on all days of pseudopregnancy except Day 1. These findings demonstrate that PGH synthase is present in the rat CL throughout pseudopregnancy. The cellular distribution of the enzyme varies within the CL and between different days of pseudopregnancy. The presence of luteal PGH synthase suggests that the CL is a source of prostaglandins that may play an autocrine or paracrine role in luteal differentiation and function.