NEGATIVE TEMPERATURE OF VORTEX MOTION

被引:30
作者
BERDICHEVSKY, V [1 ]
KUNIN, I [1 ]
HUSSAIN, F [1 ]
机构
[1] UNIV HOUSTON, DEPT MECH ENGN, HOUSTON, TX 77004 USA
来源
PHYSICAL REVIEW A | 1991年 / 43卷 / 04期
关键词
D O I
10.1103/PhysRevA.43.2050
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is shown that the well-known Onsager paradox of negative temperature of point vortices can be resolved by adopting a proper formula for entropy. We also provide an interpretation of vortex temperature in terms of the geometry of vortex trajectories.
引用
收藏
页码:2050 / 2051
页数:2
相关论文
共 19 条
[1]  
BERDICHEVSKII VL, 1988, PMM-J APPL MATH MEC+, V52, P738, DOI 10.1016/0021-8928(88)90009-3
[2]  
FROHLICH J, 1982, COMMUN MATH PHYS, V87, P1, DOI 10.1007/BF01211054
[3]  
GIBBS GW, 1902, ELEMENTARY PRINCIPLE
[4]  
HERTZ P, 1910, ANN PHYS-LEIPZIG, V33, P222
[5]   NEGATIVE TEMPERATURE STATES FOR 2-DIMENSIONAL GUIDING-CENTER PLASMA [J].
JOYCE, G ;
MONTGOME.D .
JOURNAL OF PLASMA PHYSICS, 1973, 10 (AUG) :107-&
[6]  
KASUGE T, 1961, P JPN ACAD, V37, P7
[7]   TWO-DIMENSIONAL TURBULENCE [J].
KRAICHNAN, RH ;
MONTGOMERY, D .
REPORTS ON PROGRESS IN PHYSICS, 1980, 43 (05) :547-619
[8]  
Landau L. D., 1980, STAT PHYS THEORY CON
[9]  
LIN CC, 1943, U TORONTO STUD APPL, V5, P570
[10]   NON-GAUSSIAN PROBABILITY DISTRIBUTIONS FOR A VORTEX FLUID [J].
LUNDGREN, TS ;
POINTIN, YB .
PHYSICS OF FLUIDS, 1977, 20 (03) :356-363