RELATIONSHIP BETWEEN STOCHASTIC AND DIFFERENTIAL MODELS OF COMPARTMENTAL SYSTEMS

被引:21
作者
EISENFELD, J [1 ]
机构
[1] UNIV TEXAS,HLTH SCI CTR,DEPT MED COMP SCI,DALLAS,TX 75235
关键词
D O I
10.1016/0025-5564(79)90054-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper shows that the differential-equation model for compartmental systems is consistent with a stochastic description. Consequently, we may employ either a differential-equation or a stochastic formulation, either for parameter identification or for physical interpretation, as best suits the purpose. The differential-equation parameters, the so-called fractional transfer coefficients, may be determined from the corresponding set of stochastic parameters and vice versa. © 1979.
引用
收藏
页码:289 / 305
页数:17
相关论文
共 15 条
  • [1] BELLMAN R, 1970, Mathematical Biosciences, V7, P329, DOI 10.1016/0025-5564(70)90132-X
  • [2] BHAT UN, 1972, ELEMENTS APPLIED STO, P100
  • [3] COBELLI C, 1970, MATH BIOSCI, V7, P329
  • [4] BLOCK DIAGONALIZATION AND EIGENVALUES
    EISENFELD, J
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1976, 15 (03) : 205 - 215
  • [5] EISENFELD J, UNPUBLISHED
  • [6] FIFE D, 1972, Mathematical Biosciences, V14, P311, DOI 10.1016/0025-5564(72)90082-X
  • [7] FOSTER D M, 1975, Mathematical Biosciences, V26, P89, DOI 10.1016/0025-5564(75)90096-6
  • [8] HEARON J Z, 1972, Mathematical Biosciences, V15, P69, DOI 10.1016/0025-5564(72)90063-6
  • [9] Jacquez J.A., 1972, COMPARTMENTAL ANAL B
  • [10] Lakshmikantham, 1977, NONLINEAR SYSTEMS AP, P353