CONVERGENCE OF A 2ND-ORDER SCHEME FOR SEMILINEAR HYPERBOLIC-EQUATIONS IN 2 + 1 DIMENSIONS

被引:14
作者
GLASSEY, R [1 ]
SCHAEFFER, J [1 ]
机构
[1] CARNEGIE MELLON UNIV, DEPT MATH, PITTSBURGH, PA 15213 USA
关键词
D O I
10.2307/2008531
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A second-order energy-preserving scheme is studied for the solution of the semilinear Cauchy Problem u(tt) - u(xx) - U(yy) + u3 = 0 (t > 0; x, y epsilon R). Smooth data functions of compact support are prescribed at t = 0. On any time interval [0, T], second-order convergence (up to logarithmic corrections) to the exact solution is established in both the energy and uniform norms.
引用
收藏
页码:87 / 106
页数:20
相关论文
共 9 条
[1]   THE GLOBAL CAUCHY-PROBLEM FOR THE NON-LINEAR KLEIN-GORDON EQUATION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1985, 189 (04) :487-505
[2]   TIME DECAY FOR NON-LINEAR WAVE-EQUATIONS IN 2 SPACE DIMENSIONS [J].
GLASSEY, R ;
PECHER, H .
MANUSCRIPTA MATHEMATICA, 1982, 38 (03) :387-400
[3]  
GLASSEY R, 1982, LCDS8224 BROWN U REP
[4]  
GLASSEY R, INVERSE DISCRETE 2 D
[5]  
Isaacson E., 1966, ANAL NUMERICAL METHO
[6]  
Oberhettinger F., 1966, FORMULAS THEOREMS SP, DOI 10.1007/978-3-662-11761-3
[7]   NUMERICAL-SOLUTION OF A NON-LINEAR KLEIN-GORDON EQUATION [J].
STRAUSS, W ;
VAZQUEZ, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 28 (02) :271-278
[8]  
STRAUSS W, 1989, CBMS LECTURES
[9]  
VASQUEZ L, 1983, CHINESE J APPL SCI, V1, P25