AN AFFINE WALK ON THE HYPERCUBE

被引:15
作者
DIACONIS, P
GRAHAM, R
机构
[1] AT&T BELL LABS,DIV RES INFORMAT SCI,MURRAY HILL,NJ 07974
[2] HARVARD UNIV,DEPT MATH,CAMBRIDGE,MA 02138
关键词
MARKOV CHAIN; UNIFORM DISTRIBUTION; CUTOFF PHENOMENA; FOURIER ANALYSIS; CODE;
D O I
10.1016/0377-0427(92)90251-R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Z2d be the group of binary d-tuples. We study the process X(n) = AX(n-1) + epsilon(n) with X(i) is-an-element-of Z2d, A fixed in GL(d)(Z2) and epsilon(n) a random vector of disturbance terms. This models algorithms in the presence of a "bad bit". For a class of situations we show that the distribution of X(n) tends to the uniform distribution on Z2d. We determine sharp rates of convergence and demonstrate the existence of cutoff phenomena. The analysis depends on understanding codes made from the binomial coefficients (mod 2). It leads to a novel type of oscillating behavior for the location of the cutoff and for the error terms.
引用
收藏
页码:215 / 235
页数:21
相关论文
共 15 条
[1]   SHUFFLING CARDS AND STOPPING-TIMES [J].
ALDOUS, D ;
DIACONIS, P .
AMERICAN MATHEMATICAL MONTHLY, 1986, 93 (05) :333-348
[2]  
ALDOUS D, 1983, LECT NOTES MATH, V986, P243
[3]  
[Anonymous], 1991, INTRO PROBABILITY TH
[4]   RANDOM-WALKS ARISING IN RANDOM NUMBER GENERATION [J].
CHUNG, FRK ;
DIACONIS, P ;
GRAHAM, RL .
ANNALS OF PROBABILITY, 1987, 15 (03) :1148-1165
[5]   GENERATING A RANDOM PERMUTATION WITH RANDOM TRANSPOSITIONS [J].
DIACONIS, P ;
SHAHSHAHANI, M .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 57 (02) :159-179
[6]   UPDATING SUBJECTIVE-PROBABILITY [J].
DIACONIS, P ;
ZABELL, SL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1982, 77 (380) :822-830
[7]  
DIACONIS P, 1989, RANDOM STRUCTURES AL, V1, P21
[8]  
Diaconis P., 1988, GROUP REPRESENTATION
[9]  
DIACONIS P, 1991, UNPUB RUNNING RECURR
[10]  
DIACONS P, 1990, P SHORT COURSE MATRI, P37