EIGENTENSORS OF LINEAR ANISOTROPIC ELASTIC-MATERIALS

被引:291
作者
MEHRABADI, MM [1 ]
COWIN, SC [1 ]
机构
[1] TULANE UNIV,DEPT BIOMED ENGN,NEW ORLEANS,LA 70118
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
10.1093/qjmam/43.1.15
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are two eigentensors for a linear isotropic elastic material; one is the deviatoric second-rank tensor, and the other is a second-rank tensor proportional to the unit tensor and often called the spherical or hydrostatic part of the tensor. The eigentensors of isotropic elasticity have many properties of physical and mathe-matical significance. In this paper a method of construction of the eigentensors for the anisotropic elastic-material symmetries is presented and applied to determine the eigentensors of each anisotropic elastic symmetry. The eigentensors for the anisotropic symmetries are shown to have the same important properties as those possessed by the eigentensors of isotropic elasticity. © 1990 Oxford University Press.
引用
收藏
页码:15 / 41
页数:27
相关论文
共 12 条
[1]  
BOND W, 1943, BELL SYST TECH J, V42, P1
[2]  
Green AE., 1960, LARGE ELASTIC DEFORM
[3]  
HEARMON RFS, 1961, APPLIED ANISOTROPIC
[4]  
Kelvin Lord, 1856, PHILOS T ROY SOC LON, V166, P481
[5]  
Kelvin Lord, 1878, ENCYCL BRITANNICA, V7, P796
[6]  
NYE JF, 1957, PHYSICAL PROPERTIES
[7]   CONSTRAINTS IN LINEARLY ELASTIC-MATERIALS [J].
PIPKIN, AC .
JOURNAL OF ELASTICITY, 1976, 6 (02) :179-193
[8]  
TODHUNTER I, 1893, HIST THEORY ELASTI 2, V2
[9]  
VOIGT W, 1910, LEHRBUCH KRISTALLPHY, P560
[10]   Mechanics of the ductile form changes of crystals [J].
von Mises, R .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1928, 8 :161-185