THE X-CHROMOSOME IN DEVELOPMENT IN MOUSE AND MAN

被引:18
作者
MONK, M
机构
[1] MRC Mammalian Development Unit, London, NW1 2HE
关键词
D O I
10.1007/BF01799608
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In mammals, dosage compensation for X-linked genes between males and females is achieved by the inactivation of one of the X chromosomes in females. The inactivation event occurs early in development in all cells of the female mouse embryo and is stable and heritable in somatic cells. However, in the primordial germ cells, reactivation occurs around the time of meiosis. Owing to random inactivation in somatic cells, all female mice and humans are mosaic for X-linked gene function. Variable mosaicism can result in expression of disease in human females heterozygous for an X-linked gene defect. In the extra-embryonic lineages of female mouse embryos, and in the somatic cells of female marsupials, the paternally inherited X chromosome is preferentially inactivated. The X chromosomes in the egg and sperm must be differentially marked or imprinted, so that they are distinguished by the inactivation mechanism in these tissues. Initiation of inactivation of an entire X chromosome appears to spread from a single X-inactivation centre and may involve the recently discovered gene, XIST, which is expressed only from the inactive X chromosome. The maintenance of inactivation of certain household genes on the inactive X chromosome involves methylation of CpG islands in their 5' regions. Critical CpG sites are methylated at, or very close to, the time of inactivation in development. The mouse and the human X chromosomes carry the same genes but their arrangement is different and there are some genes in the pairing segment and elsewhere on the human X chromosome which can escape inactivation. Regions of homology between the mouse and human X chromosomes allow prediction of the map positions of homologous genes and provide mouse models of genetic disease in the human.
引用
收藏
页码:499 / 513
页数:15
相关论文
共 103 条
[1]   X-CHROMOSOME INACTIVATION MAY EXPLAIN THE DIFFERENCE IN VIABILITY OF XO HUMANS AND MICE [J].
ASHWORTH, A ;
RASTAN, S ;
LOVELLBADGE, R ;
KAY, G .
NATURE, 1991, 351 (6325) :406-408
[2]  
BARLOW DP, 1991, NATURE, V349, P374
[3]   PARENTAL IMPRINTING OF THE MOUSE H19 GENE [J].
BARTOLOMEI, MS ;
ZEMEL, S ;
TILGHMAN, SM .
NATURE, 1991, 351 (6322) :153-155
[4]   PHYSICAL MAPPING ACROSS THE FRAGILE-X - HYPERMETHYLATION AND CLINICAL EXPRESSION OF THE FRAGILE-X SYNDROME [J].
BELL, MV ;
HIRST, MC ;
NAKAHORI, Y ;
MACKINNON, RN ;
ROCHE, A ;
FLINT, TJ ;
JACOBS, PA ;
TOMMERUP, N ;
TRANEBJAERG, L ;
FROSTERISKENIUS, U ;
KERR, B ;
TURNER, G ;
LINDENBAUM, RH ;
WINTER, R ;
PEMBREY, M ;
THIBODEAU, S ;
DAVIES, KE .
CELL, 1991, 64 (04) :861-866
[5]   CHARACTERIZATION OF A MURINE GENE EXPRESSED FROM THE INACTIVE X-CHROMOSOME [J].
BORSANI, G ;
TONLORENZI, R ;
SIMMLER, MC ;
DANDOLO, L ;
ARNAUD, D ;
CAPRA, V ;
GROMPE, M ;
PIZZUTI, A ;
MUZNY, D ;
LAWRENCE, C ;
WILLARD, HF ;
AVNER, P ;
BALLABIO, A .
NATURE, 1991, 351 (6324) :325-329
[6]   CONSERVATION OF POSITION AND EXCLUSIVE EXPRESSION OF MOUSE XIST FROM THE INACTIVE X-CHROMOSOME [J].
BROCKDORFF, N ;
ASHWORTH, A ;
KAY, GF ;
COOPER, P ;
SMITH, S ;
MCCABE, VM ;
NORRIS, DP ;
PENNY, GD ;
PATEL, D ;
RASTAN, S .
NATURE, 1991, 351 (6324) :329-331
[7]   LOCALIZATION OF THE X-INACTIVATION CENTER ON THE HUMAN X-CHROMOSOME IN XQ13 [J].
BROWN, CJ ;
LAFRENIERE, RG ;
POWERS, VE ;
SEBASTIO, G ;
BALLABIO, A ;
PETTIGREW, AL ;
LEDBETTER, DH ;
LEVY, E ;
CRAIG, IW ;
WILLARD, HF .
NATURE, 1991, 349 (6304) :82-84
[8]   A GENE FROM THE REGION OF THE HUMAN X-INACTIVATION CENTER IS EXPRESSED EXCLUSIVELY FROM THE INACTIVE X-CHROMOSOME [J].
BROWN, CJ ;
BALLABIO, A ;
RUPERT, JL ;
LAFRENIERE, RG ;
GROMPE, M ;
TONLORENZI, R ;
WILLARD, HF .
NATURE, 1991, 349 (6304) :38-44
[9]   HETEROCHROMATIC CHROMOSOMES IN COCCIDS - PROCESS OF HETEROCHROMATIZATION + FUNCTION OF HETEROCHROMATIN IN COCCID INSECTS ARE REVIEWED [J].
BROWN, SW ;
NUR, U .
SCIENCE, 1964, 145 (362) :130-&
[10]  
BUCKLE VJ, 1985, CYTOGENET CELL GENET, V40, P594