A NONPERTURBATIVE TREATMENT OF 2-DIMENSIONAL QUANTUM-GRAVITY

被引:391
作者
GROSS, DJ
MIGDAL, AA
机构
[1] Joseph Henry Laboratories, Princeton University, Princeton
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(90)90450-R
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose a nonperturbative definition of two-dimensional quantum gravity, based on a double scaling limit of the random matrix model. We develop an operator formalism for utilizing the method of orthogonal polynomials that allows us to solve the matrix models to all orders in the genus expansion. Using this formalism we derive an exact differential equation for the partition function of two-dimensional gravity as a function of the string coupling constant that governs the genus expansion of two-dimensional surfaces, and discuss its properties and consequences. We construct and discuss the correlation functions of an infinite set of pointlike and loop operators to all orders in the genus expansion. © 1990.
引用
收藏
页码:333 / 365
页数:33
相关论文
共 43 条
[1]   THE APPEARANCE OF CRITICAL DIMENSIONS IN REGULATED STRING THEORIES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J ;
ORLAND, P .
NUCLEAR PHYSICS B, 1986, 270 (03) :457-482
[2]   DISEASES OF TRIANGULATED RANDOM SURFACE MODELS, AND POSSIBLE CURES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1985, 257 (03) :433-449
[3]   MICROSCOPIC AND MACROSCOPIC LOOPS IN NONPERTURBATIVE 2-DIMENSIONAL GRAVITY [J].
BANKS, T ;
DOUGLAS, MR ;
SEIBERG, N ;
SHENKER, SH .
PHYSICS LETTERS B, 1990, 238 (2-4) :279-286
[4]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[5]  
Bender C. M., ADV MATH METHODS SCI
[6]  
BESSIS D, 1979, COMMUN MATH PHYS, V69, P69
[7]   MICROCANONICAL SIMULATIONS OF RANDOMLY TRIANGULATED PLANAR RANDOM SURFACES [J].
BILLOIRE, A ;
DAVID, F .
PHYSICS LETTERS B, 1986, 168 (03) :279-283
[8]   ANALYTICAL AND NUMERICAL STUDY OF A MODEL OF DYNAMICALLY TRIANGULATED RANDOM SURFACES [J].
BOULATOV, DV ;
KAZAKOV, VA ;
KOSTOV, IK ;
MIGDAL, AA .
NUCLEAR PHYSICS B, 1986, 275 (04) :641-686
[9]   UNIVERSALITY, CRITICAL EXPONENTS AND MASS GAP IN THE C-]0 LIMIT OF THE MODEL OF DYNAMICALLY TRIANGULATED RANDOM SURFACES [J].
BOULATOV, DV ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1987, 184 (2-3) :247-252
[10]   THE ISING-MODEL COUPLED TO 2D GRAVITY - A NONPERTURBATIVE ANALYSIS [J].
BREZIN, E ;
DOUGLAS, MR ;
KAZAKOV, V ;
SHENKER, SH .
PHYSICS LETTERS B, 1990, 237 (01) :43-46