ANALYTIC CONTINUATION OF EIGENVALUE PROBLEMS

被引:98
作者
BENDER, CM [1 ]
TURBINER, A [1 ]
机构
[1] MOSCOW THEORET & EXPTL PHYS INST,MOSCOW 117259,RUSSIA
关键词
D O I
10.1016/0375-9601(93)90153-Q
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we consider the dependence of Schrodinger equation eigenvalue problems on the coupling-constant parameters in the potential. We show that unless great care is taken, analytic continuation in these parameters can lead to surprising and paradoxical conclusions. Careful analysis of the analytical properties shows that such eigenvalue problems can have elaborate internal structure; these problems can incorporate several different eigenvalue problems joined together. For example, the anharmonic oscillator, whose potential is V(x) = a2x6 - 3ax2, is actually four different eigenvalue problems combined into one.
引用
收藏
页码:442 / 446
页数:5
相关论文
共 6 条
[1]   ANHARMONIC OSCILLATOR [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW, 1969, 184 (05) :1231-&
[2]   PADE APPROXIMANTS AND ANHARMONIC OSCILLATOR [J].
LOEFFEL, JJ ;
MARTIN, A ;
SIMON, B ;
WIGHTMAN, AS .
PHYSICS LETTERS B, 1969, B 30 (09) :656-&
[3]  
LOEFFEL JJ, 1971, CERNTH1167 REP
[4]  
SIMON B, 1970, ANN PHYS-NEW YORK, V58, P79
[5]   THE SPECTRUM PROBLEM IN QUANTUM-MECHANICS AND THE NON-LINEARIZATION PROCEDURE [J].
TURBINER, AV .
USPEKHI FIZICHESKIKH NAUK, 1984, 144 (01) :35-78
[6]   QUASI-EXACTLY-SOLVABLE PROBLEMS AND SL(2) ALGEBRA [J].
TURBINER, AV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (03) :467-474