NUMERICAL PASSAGE FROM KINETIC TO FLUID EQUATIONS

被引:97
作者
CORON, F [1 ]
PERTHAME, B [1 ]
机构
[1] UNIV ORLEANS,DEPT MATH,F-45067 ORLEANS 02,FRANCE
关键词
BGK MODEL; PARTICLE METHOD; COMPRESSIBLE EULER EQUATIONS; ENTROPY CONDITION;
D O I
10.1137/0728002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical way to pass from the Bhatnagar-Gross-Krook model of the Boltzmann equation to compressible Euler equations is presented. In order to do so, a stable discretization of the kinetic equation, valid for arbitrary values of the mean free path is described. This requires that the discretization preserves some physical properties: positivity, conservation of mass, momentum, energy, and entropy property. This is motivated by hypersonic computations for reentry problems.
引用
收藏
页码:26 / 42
页数:17
相关论文
共 18 条
[1]  
BABOVSKY H, 1986, SIMULATION SCHEME BO
[2]  
BALIAN R, 1982, PHYSIQUE STATISTIQUE
[3]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[4]  
BIRD GA, 1976, MOL GAS DYNAMICS
[5]   AVERAGED MULTIVALUED SOLUTIONS FOR SCALAR CONSERVATION-LAWS [J].
BRENIER, Y .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (06) :1013-1037
[6]   MODEL EQUATIONS FOR A VIBRATIONALLY RELAXING GAS [J].
BRUN, R ;
ZAPPOLI, B .
PHYSICS OF FLUIDS, 1977, 20 (09) :1441-1448
[8]  
CERCIGNANI C, 1975, THEORY APPLICATIONS
[9]  
DESHPANDE SM, 1978, 78FM4 DEP AER ENG IN
[10]  
DESHPANDE SM, 1986, NASA2613 LANGL RES C