NUMERICAL AND ANALYTICAL ESTIMATES FOR THE STRUCTURE FUNCTIONS IN 2-DIMENSIONAL MAGNETOHYDRODYNAMIC FLOWS

被引:18
作者
GRAUER, R
MARLIANI, C
机构
[1] Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf
关键词
D O I
10.1063/1.871115
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In two-dimensional magnetohydrodynamic turbulence, the Kraichnan-Iroshnikov dimensional analysis suggests a linear scaling law for the exponents ζp=p/4 of the structure functions for the Elsässer variables z± = u±B. Numerical simulations are presented and higher order structure functions are calculated using the extended self-similarity hypothesis of Benzi et al. [Phys. Rev. E 48, R29 (1993)]. In addition, an estimate for the first structure function ζ1≥=1/ 4 is derived using a geometric technique introduced by Constantin and Procaccia [Phys. Rev. E 47, 3307 (1993)] in the the context of the transport of a passive scalar in three-dimensional Navier-Stokes turbulence. © 1995 American Institute of Physics.
引用
收藏
页码:41 / 47
页数:7
相关论文
共 19 条
[11]   SCALING IN FLUID TURBULENCE - A GEOMETRIC-THEORY [J].
CONSTANTIN, P ;
PROCACCIA, I .
PHYSICAL REVIEW E, 1993, 47 (05) :3307-3315
[12]  
Falconer, 1985, GEOMETRY FRACTAL SET
[13]  
Iroshnikov P., 1964, SOV ASTRON, V7, P566
[15]   INERTIAL-RANGE SPECTRUM OF HYDROMAGNETIC TURBULENCE [J].
KRAICHNAN, RH .
PHYSICS OF FLUIDS, 1965, 8 (07) :1385-+
[16]  
MARSCH E, 1993, ANN GEOPHYS, V11, P227
[17]   INERTIAL RANGES AND RESISTIVE INSTABILITIES IN TWO-DIMENSIONAL MAGNETOHYDRODYNAMIC TURBULENCE [J].
POLITANO, H ;
POUQUET, A ;
SULEM, PL .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (12) :2330-2339
[18]   INFLUENCE OF VELOCITY-MAGNETIC FIELD CORRELATIONS ON DECAYING MAGNETOHYDRODYNAMIC TURBULENCE WITH NEUTRAL X-POINTS [J].
POUQUET, A ;
SULEM, PL ;
MENEGUZZI, M .
PHYSICS OF FLUIDS, 1988, 31 (09) :2635-2643
[19]   NON-KOLMOGOROV SCALING EXPONENTS AND THE GEOMETRY OF HIGH REYNOLDS-NUMBER TURBULENCE [J].
PROCACCIA, I ;
CONSTANTIN, P .
PHYSICAL REVIEW LETTERS, 1993, 70 (22) :3416-3419