A NONLINEAR KNAPSACK-PROBLEM

被引:79
作者
HOCHBAUM, DS [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT IEOR,BERKELEY,CA 94720
关键词
CONVEX OPTIMIZATION; FULLY POLYNOMIAL APPROXIMATION SCHEME; KNAPSACK PROBLEM; QUADRATIC KNAPSACK PROBLEM; ALLOCATION PROBLEM;
D O I
10.1016/0167-6377(95)00009-9
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The nonlinear Knapsack problem is to maximize a separable concave objective function, subject to a single ''packing'' constraint, in nonnegative variables. We consider this problem in integer and continuous variables, and also when the packing constraint is convex. Although the nonlinear Knapsack problem appears difficult in comparison with the linear Knapsack problem, we prove that its complexity is similar. We demonstrate for the nonlinear Knapsack problem in n integer variables and knapsack volume limit B, a fully polynomial approximation scheme with running time (O) over tilde((1/epsilon(2)) (n + 1/epsilon(2))) (omitting polylog terms); and for the continuous case an algorithm delivering an epsilon-accurate solution in O(n log(B/epsilon)) operations.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 18 条
[1]  
BRETTHAUER K, 1993, IN PRESS ORSA J COMP
[2]  
BRETTHAUER K, 1993, UNPUB NONLINEAR RESO
[3]   AN O(N) ALGORITHM FOR QUADRATIC KNAPSACK-PROBLEMS [J].
BRUCKER, P .
OPERATIONS RESEARCH LETTERS, 1984, 3 (03) :163-166
[4]   STRONGLY POLYNOMIAL ALGORITHMS FOR THE QUADRATIC TRANSPORTATION PROBLEM WITH A FIXED NUMBER OF SOURCES [J].
COSARES, S ;
HOCHBAUM, DS .
MATHEMATICS OF OPERATIONS RESEARCH, 1994, 19 (01) :94-111
[5]   THE COMPLEXITY OF SELECTION AND RANKING IN X + Y AND MATRICES WITH SORTED COLUMNS [J].
FREDERICKSON, GN ;
JOHNSON, DB .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1982, 24 (02) :197-208
[6]   LOWER AND UPPER-BOUNDS FOR THE ALLOCATION PROBLEM AND OTHER NONLINEAR OPTIMIZATION PROBLEMS [J].
HOCHBAUM, DS .
MATHEMATICS OF OPERATIONS RESEARCH, 1994, 19 (02) :390-409
[7]   CONVEX SEPARABLE OPTIMIZATION IS NOT MUCH HARDER THAN LINEAR OPTIMIZATION [J].
HOCHBAUM, DS ;
SHANTHIKUMAR, JG .
JOURNAL OF THE ACM, 1990, 37 (04) :843-862
[8]  
Ibaraki T, 1988, RESOURCE ALLOCATION, V1st
[9]   FAST APPROXIMATION ALGORITHMS FOR KNAPSACK AND SUM OF SUBSET PROBLEMS [J].
IBARRA, OH ;
KIM, CE .
JOURNAL OF THE ACM, 1975, 22 (04) :463-468
[10]  
Kozlov M. K., 1979, DOSI AKAD NAUK PKSR, V5, P1051