COUPLED MAP MODEL WITH A CONSERVED ORDER PARAMETER

被引:8
作者
PURI, S
DESAI, RC
KAPRAL, R
机构
[1] JAWAHARLAL NEHRU UNIV,SCH PHYS SCI,NEW DELHI 110067,INDIA
[2] UNIV TORONTO,DEPT CHEM,TORONTO M5S 1A7,ONTARIO,CANADA
来源
PHYSICA D | 1991年 / 50卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0167-2789(91)90176-A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The bifurcation structure and dynamics of a coupled map model with a conserved order parameter are studied. In a particular region of parameter space, the dynamics of the model mimics that of the continuum Cahn-Hilliard equation and gives rise to smooth, static structures. These structures are described in terms of the intersections of manifolds associated with the fixed points of a four-dimensional, conservative map, which is chaotic. The dimensionality of the map is a consequence of the conserved order parameter. In other regions of parameter space, the dynamics of the model gives rise to modulated structures with defects as well as various more complex spatio-temporal states.
引用
收藏
页码:207 / 230
页数:24
相关论文
共 20 条
[1]   COHERENCE, CHAOS, AND BROKEN SYMMETRY IN CLASSICAL, MANY-BODY DYNAMIC-SYSTEMS [J].
BOHR, T ;
GRINSTEIN, G ;
HE, Y ;
JAYAPRAKASH, C .
PHYSICAL REVIEW LETTERS, 1987, 58 (21) :2155-2158
[2]  
CAHN JW, 1968, T METALL SOC AIME, V242, P166
[3]  
Crutchfield J. P., 1987, Directions in chaos. Vol.1, P272
[4]   ONE-DIMENSIONAL STRINGS, RANDOM FLUCTUATIONS, AND COMPLEX CHAOTIC STRUCTURES [J].
DEISSLER, RJ .
PHYSICS LETTERS A, 1984, 100 (09) :451-454
[5]  
DEMONGEOT J, 1985, DYNAMICAL SYSTEMS CE
[7]   COMPETITION BETWEEN STABLE STATES IN SPATIALLY-DISTRIBUTED SYSTEMS [J].
KAPRAL, R ;
OPPO, GL .
PHYSICA D, 1986, 23 (1-3) :455-463
[8]   PATTERN-FORMATION IN TWO-DIMENSIONAL ARRAYS OF COUPLED, DISCRETE-TIME OSCILLATORS [J].
KAPRAL, R .
PHYSICAL REVIEW A, 1985, 31 (06) :3868-3879
[9]  
Lichtenberg A. J., 1983, REGULAR STOCHASTIC M
[10]  
LIEB EH, 1986, MATH PHYSICS ONE DIM