MOMENT-PROBLEM FORMULATION OF A MINIMAX QUANTIZATION PROCEDURE

被引:4
作者
HANDY, CR
APPIAH, K
BESSIS, D
机构
[1] CLARK ATLANTA UNIV, CTR THEORET STUDIES PHYS SYST, ATLANTA, GA 30314 USA
[2] CENS, SERV PHYS THEOR, F-91190 GIF SUR YVETTE, FRANCE
来源
PHYSICAL REVIEW A | 1994年 / 50卷 / 02期
关键词
D O I
10.1103/PhysRevA.50.988
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The eigenvalue moment method (EMM) is a general theory for generating converging lower and upper bounds to the discrete, low-lying spectrum of Schrodinger Hamiltonians. Recently, Handy, Giraud, and Bessis [Phys. Rev. A 44, 1505 (1991)] developed a dynamical systems EMM formulation through the discovery of a fundamental convex function, F(E)[u]=Min(sigma=0.1)[V(sigma,E)[u]\M(sigma,E)[u]\V(sigma,E)[u]]. By incorporating this within the c-shift EMM theory of Handy and Lee [J. Phys. A 24, 1565 (1991)], there results an alternative quantization procedure involving the function V(E)=Max(u)Min(sigma=0,1[V(sigma,E,S)[u]\S(sigma)-1M(sigma,E)[u]S(sigma)-1\V(sigma,E,S)], whose local maxima converge to the discrete energy states of the system. We discuss the relevant theory and present several examples.
引用
收藏
页码:988 / 996
页数:9
相关论文
共 51 条
[1]  
[Anonymous], 1959, AM J PHYS, DOI [10.1119/1.1934950, DOI 10.1119/1.1934950]
[2]  
AUBERSON G, 1983, NUOVO CIM B, V75, P105
[3]  
Bender Carl, 1999, ADV MATH METHODS SCI, V1
[4]   LARGE-ORDER BEHAVIOR OF PERTURBATION THEORY [J].
BENDER, CM ;
WU, TS .
PHYSICAL REVIEW LETTERS, 1971, 27 (07) :461-&
[5]   ANHARMONIC OSCILLATOR .2. STUDY OF PERTURBATION-THEORY IN LARGE ORDER [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW D, 1973, 7 (06) :1620-1636
[6]   ANHARMONIC OSCILLATOR [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW, 1969, 184 (05) :1231-&
[7]   BOUNDS TO GREEN-FUNCTIONS AND LOWER BOUNDS TO THE SPECTRUM OF A POSITIVE HAMILTONIAN - A RECOLLECTION OF DISCUSSIONS WITH GLASER,V.J. [J].
BERTLMANN, RA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 134 (5-6) :279-296
[8]  
Carnahan B., 1969, APPL NUMERICAL METHO
[9]  
Chvatal V, 1983, LINEAR PROGRAMMING
[10]  
CIZEK J, 1986, INT J QUANTUM CHEM, P65