VIOLAXANTHIN CYCLE PIGMENT CONTENTS IN POTATO AND TOBACCO PLANTS WITH GENETICALLY REDUCED PHOTOSYNTHETIC CAPACITY

被引:54
作者
BILGER, W [1 ]
FISAHN, J [1 ]
BRUMMET, W [1 ]
KOSSMANN, J [1 ]
WILLMITZER, L [1 ]
机构
[1] INST GENBIOL FORSCH, D-14195 BERLIN, GERMANY
关键词
D O I
10.1104/pp.108.4.1479
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The influence of photosynthetic activity on the light-dependent adaptation of the pool size of the violaxanthin cycle pigments (violaxanthin + antheraxanthin + zeaxanthin) was studied in leaves of wild-type and transgenic potato (Solanum tuberosum L.) and tobacco (Nicotiana tabacum L.) plants. The genetically manipulated plants expressed an antisense mRNA coding for the chloroplastic fructose-bisphosphatase. Chl fluorescence quenching analysis revealed that the transformed plants exhibited a greatly impaired electron transport capacity. Light-limited and light-saturated nonphotochemical quenching was strongly enhanced in the mRNA antisense potato plants. After 7 d of adaptation at various high photosynthetic photon flux densities (PPFDs), the violaxanthin cycle pool size increased, with a progressive elevation in PPFD. The pool size was higher for transgenic potatoes than for wild-type plants at all PPFDs. This difference vanished when pool size was correlated with the PPFD in excess of photosynthesis, as indicated by the epoxidation state of the violaxanthin cycle. Contrasting results were obtained for tobacco; in this species, photosynthetic activity did not affect the pool size. We conclude that regulatory mechanisms exist in potato, by which photosynthetic activity can influence the violaxanthin cycle pool size. Furthermore, evidence is provided that this adaptation of the pool size may contribute to an improved photoprotection of the photosynthetic apparatus under high-light conditions. However, tobacco plants seem to regulate their pool size independently of photosynthetic activity.
引用
收藏
页码:1479 / 1486
页数:8
相关论文
共 35 条
[1]  
Baker NR, 1994, PHOTOINHIBITION PHOT
[2]   MOLECULAR-BIOLOGY OF CAROTENOID BIOSYNTHESIS PLANTS [J].
BARTLEY, GE ;
SCOLNIK, PA ;
GIULIANO, G .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1994, 45 :287-301
[3]   ROLE OF THE XANTHOPHYLL CYCLE IN PHOTOPROTECTION ELUCIDATED BY MEASUREMENTS OF LIGHT-INDUCED ABSORBENCY CHANGES, FLUORESCENCE AND PHOTOSYNTHESIS IN LEAVES OF HEDERA-CANARIENSIS [J].
BILGER, W ;
BJORKMAN, O .
PHOTOSYNTHESIS RESEARCH, 1990, 25 (03) :173-185
[4]  
BILGER W, 1991, PLANTA, V184, P226, DOI [10.1007/BF01102422, 10.1007/BF00197951]
[5]  
BILGER W, 1994, PLANTA, V193, P238, DOI 10.1007/BF00192536
[6]  
Bjorkman O, 1994, ECOPHYSIOLOGY PHOTOS, P17
[7]   XANTHOPHYLL CYCLE COMPONENTS AND CAPACITY FOR NONRADIATIVE ENERGY-DISSIPATION IN SUN AND SHADE LEAVES OF LIGUSTRUM-OVALIFOLIUM EXPOSED TO CONDITIONS LIMITING PHOTOSYNTHESIS [J].
BRUGNOLI, E ;
CONA, A ;
LAUTERI, M .
PHOTOSYNTHESIS RESEARCH, 1994, 41 (03) :451-463
[8]  
Davies B. H., 1976, CHEM BIOCH PLANT PIG
[9]   PHOTOINHIBITION AND ZEAXANTHIN FORMATION IN INTACT LEAVES - A POSSIBLE ROLE OF THE XANTHOPHYLL CYCLE IN THE DISSIPATION OF EXCESS LIGHT ENERGY [J].
DEMMIG, B ;
WINTER, K ;
KRUGER, A ;
CZYGAN, FC .
PLANT PHYSIOLOGY, 1987, 84 (02) :218-224
[10]   CAROTENOIDS AND PHOTOPROTECTION IN PLANTS - A ROLE FOR THE XANTHOPHYLL ZEAXANTHIN [J].
DEMMIGADAMS, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1020 (01) :1-24