EVOLVING NEURAL NETWORKS

被引:155
作者
FOGEL, DB
FOGEL, LJ
PORTO, VW
机构
[1] ORINCON Corporation, San Diego, 92121, CA
关键词
D O I
10.1007/BF00199581
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Neural networks are parallel processing structures that provide the capability to perform various pattern recognition tasks. A network is typically trained over a set of exemplars by adjusting the weights of the interconnections using a back propagation algorithm. This gradient search converges to locally optimal solutions which may be far removed from the global optimum. In this paper, evolutionary programming is analyzed as a technique for training a general neural network. This approach can yield faster, more efficient yet robust training procedures that accommodate arbitrary interconnections and neurons possessing additional processing capabilities. © 1990 Springer-Verlag.
引用
收藏
页码:487 / 493
页数:7
相关论文
共 14 条
[1]  
[Anonymous], 1962, IND RES
[2]   BAYESIAN CONTROL IN MIXTURE-MODELS [J].
BERLINER, LM .
TECHNOMETRICS, 1987, 29 (04) :455-460
[3]  
BOHACHEVSKY IO, 1986, TECHNOMETRICS, V28, P209
[4]   AN EVOLUTIONARY APPROACH TO THE TRAVELING SALESMAN PROBLEM [J].
FOGEL, DB .
BIOLOGICAL CYBERNETICS, 1988, 60 (02) :139-144
[5]  
Fogel L. J., 1964, THESIS UCLA
[6]  
Fogel L. J., 1966, ARTIFICIAL INTELLIGE
[7]  
KOLMOGOROV AN, 1957, DOKL AKAD NAUK SSSR+, V114, P953
[8]  
Lippman R. P., 1987, IEEE ASSP MAGAZI APR, P4
[9]  
PARKER DB, 1985, TR47 MIT CTR COMP EC
[10]  
RUMELHART DE, 1986, PARALLEL DISTRIBUTED, V1, P423