SHIFT INVARIANCE AND THE NEOCOGNITRON

被引:25
作者
BARNARD, E [1 ]
CASASENT, D [1 ]
机构
[1] CARNEGIE MELLON UNIV,DEPT ELECT & COMP ENGN,CTR EXCELLENCE OPT DATA PROC,PITTSBURGH,PA 15213
关键词
Neocognitron; Neural classifiers; Pattern recognition; Shift invariance;
D O I
10.1016/0893-6080(90)90023-E
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate the ability of the neocognitron to perform shift-invariant pattern recognition. Both an intuitive analysis and a more formal investigation show that the performance of the neocognitron is not intrinsically shift invariant, and that certain model parameters must be chosen appropriately to obtain approximate shift invariance. It is shown how these parameters should be chosen to reach a compromise between invariance and classification sensitivity. © 1990.
引用
收藏
页码:403 / 410
页数:8
相关论文
共 10 条
[1]  
Ballard DH, 1982, COMPUTER VISION
[2]   POSITION, ROTATION, AND SCALE INVARIANT OPTICAL CORRELATION [J].
CASASENT, D ;
PSALTIS, D .
APPLIED OPTICS, 1976, 15 (07) :1795-1799
[3]  
CHIN RT, 1986, COMPUT SURV, V18, P68
[4]   NEOCOGNITRON - A NEW ALGORITHM FOR PATTERN-RECOGNITION TOLERANT OF DEFORMATIONS AND SHIFTS IN POSITION [J].
FUKUSHIMA, K ;
MIYAKE, S .
PATTERN RECOGNITION, 1982, 15 (06) :455-469
[6]  
FUKUSHIMA K, 1987, PPLIED OPTICS, V26, P4985
[7]   VISUAL-PATTERN RECOGNITION BY MOMENT INVARIANTS [J].
HU, M .
IRE TRANSACTIONS ON INFORMATION THEORY, 1962, 8 (02) :179-&
[8]  
JOHNSON K, 1988, INT C NEURAL NETS
[9]   CLASSIFICATION OF PATTERNS USING A SELF-ORGANIZING NEURAL NETWORK [J].
MENON, MM ;
HEINEMANN, KG .
NEURAL NETWORKS, 1988, 1 (03) :201-215
[10]   A NEURAL NETWORK MODEL FOR THE MECHANISM OF FEATURE-EXTRACTION - A SELF-ORGANIZING NETWORK WITH FEEDBACK INHIBITION [J].
MIYAKE, S ;
FUKUSHIMA, K .
BIOLOGICAL CYBERNETICS, 1984, 50 (05) :377-384