ON AN EVOLUTION OPERATOR CONNECTING LAGRANGIAN AND HAMILTONIAN FORMALISMS

被引:28
作者
GRACIA, X
PONS, JM
机构
关键词
D O I
10.1007/BF00401582
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:175 / 180
页数:6
相关论文
共 16 条
[1]  
Abraham R., 1983, MANIFOLDS TENSOR ANA
[2]   LAGRANGIAN AND HAMILTONIAN CONSTRAINTS FOR 2ND-ORDER SINGULAR LAGRANGIANS [J].
BATLLE, C ;
GOMIS, J ;
PONS, JM ;
ROMANROY, N .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (12) :2693-2703
[3]   EQUIVALENCE BETWEEN THE LAGRANGIAN AND HAMILTONIAN-FORMALISM FOR CONSTRAINED SYSTEMS [J].
BATLLE, C ;
GOMIS, J ;
PONS, JM ;
ROMANROY, N .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (12) :2953-2962
[4]   LAGRANGIAN AND HAMILTONIAN CONSTRAINTS [J].
BATLLE, C ;
GOMIS, J ;
PONS, JM ;
ROMAN, N .
LETTERS IN MATHEMATICAL PHYSICS, 1987, 13 (01) :17-23
[5]  
BATLLE C, IN PRESS J MATH PHYS
[6]   THE HAMILTONIAN-STRUCTURE OF YANG-MILLS THEORIES AND INSTANTONS .1. [J].
BERGVELT, MJ ;
DEKERF, EA .
PHYSICA A, 1986, 139 (01) :101-124
[7]   THE TIME-EVOLUTION OPERATOR FOR SINGULAR LAGRANGIANS [J].
CARINENA, JF ;
LOPEZ, C .
LETTERS IN MATHEMATICAL PHYSICS, 1987, 14 (03) :203-210
[8]  
DIEUDONNE J, 1974, ELEMENTS ANAL, V3
[9]  
Dirac P. A. M., 1964, LECT QUANTUM MECH
[10]  
GARCIA X, 1988, ANN PHYS-NEW YORK, V187, P355