HYPERCONTRACTION METHODS IN MOMENT INEQUALITIES FOR SERIES OF INDEPENDENT RANDOM-VARIABLES IN NORMED SPACES

被引:17
作者
KWAPIEN, S [1 ]
SZULGA, J [1 ]
机构
[1] AUBURN UNIV,DEPT ALGEBRA COMBINATOR & ANAL,AUBURN,AL 36849
关键词
RANDOM SERIES; MOMENT INEQUALITIES; HYPERCONTRACTION; NORMED SPACES;
D O I
10.1214/aop/1176990550
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that if (theta-k) is a sequence of i.i.d. real random variables then, for 1 < q < p, the linear combinations of (theta-k) have comparable pth and qth moments if and only if the joint distribution of (theta-k) is (p, q)-hypercontractive. We elaborate hypercontraction methods in a new proof of the inequality. [GRAPHICS] where (X(i)) is a sequence of independent zero-mean random variables with values in a normed space, and C(p) almost-equal-to p/ln p.
引用
收藏
页码:369 / 379
页数:11
相关论文
共 16 条
[1]   STUDY OF FOURIER COEFFICIENTS OF LP(G) FUNCTIONS [J].
BONAMI, A .
ANNALES DE L INSTITUT FOURIER, 1970, 20 (02) :335-&
[2]  
Borell C., 1977, LECT NOTES MATH, V721, p[1, 48]
[3]  
Borell C., 1984, PROBAB MATH STAT-POL, V3, P191
[4]  
DACUNHACASTELLE D, 1970, LECT NOTES MATH, V124, P47
[5]  
de Acosta A., 1980, PROBAB MATH STAT-POL, V1, P133
[6]   REPRESENTATION OF SYMMETRIC BIVARIATE CAUCHY DISTRIBUTION [J].
FERGUSON, TS .
ANNALS OF MATHEMATICAL STATISTICS, 1962, 33 (04) :1256-&
[7]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083
[8]  
HERZ CS, 1963, P AM MATH SOC, V14, P670, DOI 10.1090/S0002-9939-1963-0158251-7
[9]  
HOFFMANNJORGENSEN J, 1974, STUD MATH, V52, P159
[10]   BEST CONSTANTS IN MOMENT INEQUALITIES FOR LINEAR-COMBINATIONS OF INDEPENDENT AND EXCHANGEABLE RANDOM-VARIABLES [J].
JOHNSON, WB ;
SCHECHTMAN, G ;
ZINN, J .
ANNALS OF PROBABILITY, 1985, 13 (01) :234-253