THE ONE-DIMENSIONAL INTERSOLITON ELECTRON-TUNNELING CONDUCTION IN DOPED POLYACETYLENE - SEMICONDUCTOR-METAL TRANSITION

被引:6
作者
PARK, YW
YOON, CO
LEE, CH
机构
[1] Department of Physics, Seoul National University, Seoul
[2] Institute of Materials Science, University of Tsukuba, Tsukuba
来源
MAKROMOLEKULARE CHEMIE-MACROMOLECULAR SYMPOSIA | 1990年 / 33卷
关键词
D O I
10.1002/masy.19900330129
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The one‐dimensional intersoliton electron tunneling conduction model in doped polyacetylene, which is a semiconductor‐metal transition mechanism, is proposed. With this model, the observed two transition concentrations (y = 0.001 and y = 0.05) can be estimated correctly. In the lightly doped regime (y < 0.001), the three‐dimensional intersoliton electron hopping conduction is dominant. At the intermediate concentration regime (0.001 < y < 0.05), the electrons (or holes dopending on the dopants) can tunnel through the pinned solitons within a single chain. These tunneling charge carriers contribute to the high conductivity. But these tunneling charge carriers can give no Pauli susceptibility since they are not band‐type carriers. Instead, they are transient carriers tunneling between the two soliton sites. Finally, in the high concentration regime (y > 0.05), the pinned soliton wave function can overlap each other forming a soliton liquid. In this stage, the bond alternation of the trans‐polyacetylene chain vanishes being equivalent to the uniform bond length chain. Therefore, the metallic conductivity and finite Pauli susceptibility are expected consistent with the observed experimental results. However, since this metallic state is formed by the soliton liquid it is not a single particle like metal. The internal vibrational modes and other signals characteristic to the soliton can persist in the metallic polyacetylene. Copyright © 1990 Hüthig & Wepf Verlag
引用
收藏
页码:341 / 352
页数:12
相关论文
共 16 条
  • [1] Heeger A.J., Kivelson S., Schrieffer J.R., Su W.-P., Rev. of Modern Phys., 60, (1988)
  • [2] Moses D., Denenstein A., Chen J., McAndrew P., Woerner T., Heeger A.J., MacDiarmid A.G., Park Y.W., Phys. Rev., 25 B, (1982)
  • [3] Kivelson S., Heeger A.J., Phys. Rev. Lett., 55, (1985)
  • [4] Conwell E.M., Jeyadev S., Phys. Rev. Lett., 61, (1988)
  • [5] Dong J.M., (1984)
  • [6] Kondo J., Solid State Physics, 23, (1969)
  • [7] Heeger A.J.
  • [8] Shirakawa H., Kobayashi T., J. Phys. Paris, 3 C, (1983)
  • [9] Park Y.W., Han W.K., Choi C.H., Shirakawa H., Phys. Rev., 30 B, (1984)
  • [10] Park Y.W., Lee S.I., Kang W., Shirakawa H., Semiconductor-Metal Transition of [Ch(Fec14)y]x