POSITIVE CELL-CENTERED FINITE-VOLUME DISCRETIZATION METHODS FOR HYPERBOLIC-EQUATIONS ON IRREGULAR MESHES

被引:33
作者
BERZINS, M
WARE, JM
机构
[1] School of Computer Studies, University of Leeds, Leeds
关键词
D O I
10.1016/0168-9274(95)00007-H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The conditions sufficient to ensure positivity and linearity preservation for a cell-centered finite volume scheme for time-dependent hyperbolic equations using irregular one-dimensional and triangular two-dimensional meshes are derived. The conditions require standard flux limiters to be modified and also involve possible constraints on the meshes. The accuracy of this finite volume scheme is considered and is illustrated by two simple numerical examples.
引用
收藏
页码:417 / 438
页数:22
相关论文
共 20 条
[1]  
BARTH TJ, 1992, 27TH AER SCI C REN
[2]  
BERZINS M, 1994, MAFELAP C
[3]  
BERZINS M, 1992, IMACS PDE, V7
[4]  
BERZINS M, SIAM J SCI COMPUT
[5]  
Berzins M., 1991, MATH FINITE ELEMENTS, V7, P181
[6]  
BERZINS M, 1992, APPL NUMER MATH, V8, P1
[7]   THE RUNGE-KUTTA LOCAL PROJECTION DISCONTINUOUS GALERKIN FINITE-ELEMENT METHOD FOR CONSERVATION-LAWS .4. THE MULTIDIMENSIONAL CASE [J].
COCKBURN, B ;
HOU, SC ;
SHU, CW .
MATHEMATICS OF COMPUTATION, 1990, 54 (190) :545-581
[8]   TRIANGLE BASED ADAPTIVE STENCILS FOR THE SOLUTION OF HYPERBOLIC CONSERVATION-LAWS [J].
DURLOFSKY, LJ ;
ENGQUIST, B ;
OSHER, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 98 (01) :64-73
[9]   TRUNCATION ERROR ANALYSIS OF THE FINITE VOLUME METHOD FOR A MODEL STEADY CONVECTIVE EQUATION [J].
JENG, YN ;
CHEN, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 100 (01) :64-76
[10]  
KRONER D, 1994, SIAM J NUMER ANAL, V31, P324