TIME AND CUSTOMER PROCESSES IN QUEUES WITH STATIONARY INPUTS

被引:27
作者
MIYAZAWA, M [1 ]
机构
[1] TOKYO INST TECHNOL,TOKYO 152,JAPAN
关键词
D O I
10.2307/3213005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:349 / 357
页数:9
相关论文
共 12 条
[1]  
Billingsley P., 1965, ERGODIC THEORY INFOR
[2]   RELATION BETWEEN CUSTOMER AND TIME AVERAGES IN QUEUES [J].
BRUMELLE, SL .
JOURNAL OF APPLIED PROBABILITY, 1971, 8 (03) :508-&
[3]  
Doob J. L., 1953, STOCHASTIC PROCESSES, V101
[4]   A PROOF FOR THE QUEUING FORMULA - L=LAMBDA-W [J].
LITTLE, JDC .
OPERATIONS RESEARCH, 1961, 9 (03) :383-387
[5]   STABILITY OF A QUEUE WITH NON-INDEPENDENT INTER-ARRIVAL AND SERVICE TIMES [J].
LOYNES, RM .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1962, 58 (JUL) :497-&
[6]   STATIONARY RANDOM MEASURES ON LOCALLY COMPACT ABEL GROUPS [J].
MECKE, J .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 9 (01) :36-&
[7]   TRANSLATED RENEWAL PROCESSES AND EXISTENCE OF A LIMITING DISTRIBUTION FOR QUEUE LENGTH OF GI-G-S QUEUE [J].
MILLER, DR ;
SENTILLES, FD .
ANNALS OF PROBABILITY, 1975, 3 (03) :424-439
[8]  
MILLER DR, 1974, STOCHASTIC PROCESS A, V2, P141
[9]  
MIYAZAWA M, 1975, B24 TOK I TECHN INF
[10]  
RYLLNARDZEWSKI C, 1961, 4 P BERK S MATH STAT, V2, P455