W1+INFINITY-TYPE CONSTRAINTS IN MATRIX MODELS AT FINITE N

被引:53
作者
ITOYAMA, H [1 ]
MATSUO, Y [1 ]
机构
[1] ECOLE NORM SUPER, PHYS THEOR LAB, F-75231 PARIS 05, FRANCE
基金
美国国家科学基金会;
关键词
D O I
10.1016/0370-2693(91)91560-I
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A systematic method is presented to obtain a large class of constraint equations for matrix models at finite N. These constraints are associated with the higher order differential operators with respect to the eigenvalues of the matrices, {{lambda-n partial lambda-m}} with n, m greater-than-or-equal-to 0. In the case of the one-matrix model, we find that the constraints for lower m are reducible to the Virasoro constraints. We derive a class of new constraint equations for the matrix chains.
引用
收藏
页码:233 / 239
页数:7
相关论文
共 46 条
[1]  
ALVAREZGAUME L, CERNTH587590 PREPR
[2]   MULTILOOP CORRELATORS FOR 2-DIMENSIONAL QUANTUM-GRAVITY [J].
AMBJORN, J ;
JURKIEWICZ, J ;
MAKEENKO, YM .
PHYSICS LETTERS B, 1990, 251 (04) :517-524
[3]  
AWADA MA, 1990, UFITFTHEP9033 FLOR P
[4]   MICROSCOPIC AND MACROSCOPIC LOOPS IN NONPERTURBATIVE 2-DIMENSIONAL GRAVITY [J].
BANKS, T ;
DOUGLAS, MR ;
SEIBERG, N ;
SHENKER, SH .
PHYSICS LETTERS B, 1990, 238 (2-4) :279-286
[5]  
BANKS T, IN PRESS P CARGESE W
[6]  
BERGSHOEFF E, 1990, PHYS LETT B, V245, P442
[7]   THE ISING-MODEL COUPLED TO 2D GRAVITY - A NONPERTURBATIVE ANALYSIS [J].
BREZIN, E ;
DOUGLAS, MR ;
KAZAKOV, V ;
SHENKER, SH .
PHYSICS LETTERS B, 1990, 237 (01) :43-46
[8]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150
[9]  
CHANDHA S, 1981, J PHYS A, V17, P579
[10]   THE ISING-MODEL, THE YANG-LEE EDGE SINGULARITY, AND 2D QUANTUM-GRAVITY [J].
CRNKOVIC, C ;
GINSPARG, P ;
MOORE, G .
PHYSICS LETTERS B, 1990, 237 (02) :196-201