A HILBERT-PADE METHOD FOR MULTIPOLE APPROXIMATIONS - APPLICATION TO THE GAUSSIAN FUNCTION

被引:4
作者
MARTIN, P [1 ]
ZAMUDIOCRISTI, J [1 ]
DONOSO, G [1 ]
机构
[1] UNIV METROPOLITANA CARACAS,DEPT FIS,CARACAS,VENEZUELA
关键词
D O I
10.1063/1.524583
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A method is developed where a Hilbert transform is combined with an asymptotic Padé method in order to obtain good multipole approximations for functions whose power series have a large radius of convergence. This method has been used to find two- to eight-pole approximations for the Gaussian function. © 1980 American Institute of Physics.
引用
收藏
页码:1332 / 1335
页数:4
相关论文
共 7 条
[1]  
BAKER GA, 1975, ESSENTIALS PADES APP
[2]  
FRIED BD, 1978, PHYS FLUIDS, V11, P249
[3]   BOREL SUMMABILITY - APPLICATION TO ANHARMONIC OSCILLATOR [J].
GRAFFI, S ;
GRECCHI, V ;
SIMON, B .
PHYSICS LETTERS B, 1970, B 32 (07) :631-&
[4]   NEW 2-POLE APPROXIMATION FOR THE PLASMA DISPERSION FUNCTION-Z [J].
MARTIN, P ;
GONZALEZ, MA .
PHYSICS OF FLUIDS, 1979, 22 (07) :1413-1414
[5]  
MARTIN P, 1980, J MATH PHYS, V21, P280, DOI 10.1063/1.524411
[6]   PERTURBATION SERIES FOR CRITICAL BEHAVIOR OF TYPE-2 SUPERCONDUCTORS NEAR HC2 [J].
RUGGERI, GJ ;
THOULESS, DJ .
JOURNAL OF PHYSICS F-METAL PHYSICS, 1976, 6 (11) :2063-2079
[7]   4-POLE APPROXIMATION TO MAXWELLIAN DISTRIBUTION [J].
WARD, MAV .
PHYSICS OF FLUIDS, 1977, 20 (08) :1372-1373