A FULLY IMPLICIT DIRECT NEWTON METHOD FOR THE STEADY-STATE NAVIER-STOKES EQUATIONS

被引:12
作者
KNOLL, DA
MCHUGH, PR
机构
[1] Idaho National Engineering Laboratory, EG&G Idaho, Inc., Idaho Falls, Idaho, 83415-2414
关键词
FULLY IMPLICIT; MODIFIED NEWTONS METHOD; NUMERICAL JACOBIAN; MESH SEQUENCING; NAVIER-STOKES;
D O I
10.1002/fld.1650170602
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Newton's method and banded Gaussian elimination can be a CPU efficient method for steady-state solutions to two-dimensional Navier-Stokes equations. In this paper we look at techniques that increase the radius of convergence of Newton's method, reduce the number of times the Jacobian must be factored, and simplify evaluation of the Jacobian. The driven cavity and natural convection problems are used as test problems, and finite volume discretization is employed.
引用
收藏
页码:449 / 461
页数:13
相关论文
共 20 条
[1]  
ASCHER U, 1979, CODES BOUNDARY VALUE
[2]   NEWTON METHOD APPLIED TO FINITE-DIFFERENCE APPROXIMATIONS FOR THE STEADY-STATE COMPRESSIBLE NAVIER-STOKES EQUATIONS [J].
BAILEY, HE ;
BEAM, RM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 93 (01) :108-127
[3]  
BRAATEN ME, 1985, THESIS U MINNESOTA
[4]  
Brandt A, 1984, MULTIGRID TECHNIQUES
[5]  
EISENSTAT SC, 1978, 114 YAL U DEP COMP S
[6]  
Kantorovich L. V, 1964, FUNCTIONAL ANAL
[7]  
KNOLL DA, 1992, IN PRESS J COMPUT PH
[8]  
KNOLL DA, 1992, IN PRESS J NUC MAT
[9]  
KNOLL DA, 1991, THESIS U NEW MEXICO
[10]   ROBUST SEMIDIRECT FINITE-DIFFERENCE METHODS FOR SOLVING THE NAVIER-STOKES AND ENERGY EQUATIONS [J].
MACARTHUR, JW ;
PATANKAR, SV .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1989, 9 (03) :325-340