NUMERICAL-SOLUTION OF THE CURVED CRACK PROBLEM BY MEANS OF POLYNOMIAL-APPROXIMATION OF THE DISLOCATION DISTRIBUTION

被引:24
作者
CHEN, YZ
GROSS, D
HUANG, YJ
机构
[1] Institute of Mechanics, Technische Hochschule Darmstadt, D-6100 Darmstadt
关键词
D O I
10.1016/0013-7944(91)90184-3
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A general method for the numerical solution of the singular integral equation describing the curved crack problem is presented. The basic idea is the approximation of the dislocation function by a polynomial divided by a weight function. Combined with the collocation method this leads to a simple algebraic procedure for the calculation of K-factors. Several examples demonstrate the applicability of the method.
引用
收藏
页码:791 / 797
页数:7
相关论文
共 16 条
[1]  
BETTIN A, 1989, THESIS DARMSTADT
[2]  
Chatterjee S. N., 1975, International Journal of Solids and Structures, V11, P521, DOI 10.1016/0020-7683(75)90027-X
[3]   A PROCEDURE FOR REGULARIZATION OF SINGULAR INTEGRAL-EQUATION OF THE MULTIPLE CRACK PROBLEM IN AN INFINITE-PLATE [J].
CHEN, YZ .
INTERNATIONAL JOURNAL OF FRACTURE, 1987, 34 (03) :R53-R56
[4]   SLIGHTLY CURVED OR KINKED CRACKS [J].
COTTERELL, B ;
RICE, JR .
INTERNATIONAL JOURNAL OF FRACTURE, 1980, 16 (02) :155-169
[5]  
DREILICH L, 1985, THESIS DARMSTADT
[6]  
DREILICH L, 1985, Z ANGEW MATH MECH, V65, P132
[7]   STRESS INTENSITY FACTORS [J].
ERDOGAN, F .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1983, 50 (4B) :992-1002
[8]   STRESS INTENSITY FACTORS OF SYSTEMS OF CRACKS [J].
GROSS, D .
INGENIEUR ARCHIV, 1982, 51 (05) :301-310
[9]  
Hilderbrand F. B., 1974, INTRO NUMERICAL ANAL
[10]  
IOAKIMIDIS NI, 1979, INT J FRACTURE, V15, P299