MICROLOCAL DEFECT MEASURES

被引:352
作者
GERARD, P [1 ]
机构
[1] UNIV PARIS 11,DEPT MATH,F-91405 ORSAY,FRANCE
关键词
D O I
10.1080/03605309108820822
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In order to study weak continuity of quadratic forms on spaces of L2 solutions of systems of partial differential equations, we define defect measures on the space of positions and frequencies. A systematic use of these measures leads in particular to a compensated compactness theorem, generalizing MURAT-TARTAR's compensated compactness to variable coefficients and GOLSE-LIONS-PERTHAME-SENTIS's averaging lemma. We also obtain results on homogenization for differential operators of order 1 with oscillating coefficients.
引用
收藏
页码:1761 / 1794
页数:34
相关论文
共 19 条
[1]  
[Anonymous], 1981, ANN SCUOLA NORM-SCI, V8, P69
[2]  
BACHELOT A, 1984, CR ACAD SCI I-MATH, V299, P543
[4]  
GERARD P, 1990, ANN SCI ECOLE NORM S, V23, P89
[5]  
Gerard P, 1988, SEMINAIRE EQUATIONS
[6]   REGULARITY OF THE MOMENTS OF THE SOLUTION OF A TRANSPORT-EQUATION [J].
GOLSE, F ;
LIONS, PL ;
PERTHAME, B ;
SENTIS, R .
JOURNAL OF FUNCTIONAL ANALYSIS, 1988, 76 (01) :110-125
[7]  
GOLSE F, 1987, CR ACAD SCI I-MATH, V305, P801
[8]   BILINEAR APPLICATIONS COMPATIBLE WITH A SYSTEM WITH CONTINUITY VARIABLE-COEFFICIENTS IN BESOV-SPACES [J].
HANOUZET, B .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1985, 10 (04) :433-465
[9]  
HANOUZET B, 1983, RES NOTES MATH, V89, P208
[10]  
Hormander L., 1983, ANAL LINEAR PARTIAL, VIV