THE DISCRETE PICARD CONDITION FOR DISCRETE ILL-POSED PROBLEMS

被引:231
作者
HANSEN, PC
机构
[1] TECH UNIV DENMARK, UNIC, DK-2800 LYNGBY, DENMARK
[2] UNIV CALIF LOS ANGELES, DEPT MATH, LOS ANGELES, CA 90024 USA
关键词
ILL-POSED PROBLEMS; TIKHONOV REGULARIZATION; DISCRETE PICARD CONDITION; GENERALIZED SVD;
D O I
10.1007/BF01933214
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We investigated the approximation properties of regularized solutions to discrete ill-posed least squares problems. A necessary condition for obtaining good regularized solutions is that the Fourier coefficients of the right-hand side, when expressed in terms of the generalized SVD associated with the regularization problem, on the average decay to zero faster than the generalized singular values. This is the discrete Picard condition. We illustrate the importance of this condition theoretically as well as experimentally.
引用
收藏
页码:658 / 672
页数:15
相关论文
共 31 条
[11]   NUMERICAL ITERATIVE FILTERS APPLIED TO 1ST KIND FREDHOLM INTEGRAL-EQUATIONS [J].
GRAVES, J ;
PRENTER, PM .
NUMERISCHE MATHEMATIK, 1978, 30 (03) :281-299
[12]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[13]   PERTURBATION BOUNDS FOR DISCRETE TIKHONOV REGULARISATION [J].
HANSEN, PC .
INVERSE PROBLEMS, 1989, 5 (04) :L41-L44
[14]   THE TRUNCATED SVD AS A METHOD FOR REGULARIZATION [J].
HANSEN, PC .
BIT, 1987, 27 (04) :534-553
[15]   REGULARIZATION, GSVD AND TRUNCATED GSVD [J].
HANSEN, PC .
BIT, 1989, 29 (03) :491-504
[16]   COMPUTATION OF THE SINGULAR VALUE EXPANSION [J].
HANSEN, PC .
COMPUTING, 1988, 40 (03) :185-199
[17]  
HANSEN PC, 1989, CAM8922 DEP MATH REP
[18]  
HANSEN PC, 1990, IN PRESS SIAM J SCI, V11
[19]  
HANSON RJ, 1972, SIAM J NUMER ANAL, V8, P883
[20]   TRANSIENT TRANSPORT ACROSS THE BLOOD RETINA BARRIER [J].
LARSEN, J ;
LUNDANDERSEN, H ;
KROGSAA, B .
BULLETIN OF MATHEMATICAL BIOLOGY, 1983, 45 (05) :749-758