AN ENTROPY SCHEME FOR THE FOKKER-PLANCK COLLISION OPERATOR OF PLASMA KINETIC-THEORY

被引:55
作者
DEGOND, P
LUCQUINDESREUX, B
机构
[1] ECOLE NORMALE SUPER, URA 1611, CTR MATH & LEURS APPLICAT, 61 AVE PRESIDENT WILSON, F-94235 CACHAN, FRANCE
[2] UNIV PARIS 06, ANAL NUMER LAB, URA 189, F-75252 PARIS 05, FRANCE
关键词
Mathematics Subject Classification (1991): 65M06; 82C40; 82C80; 82D10;
D O I
10.1007/s002110050059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a finite difference scheme to approximate the Fokker-Planck collision operator in 3 velocity dimensions. The principal feature of this scheme is to provide a decay of the numerical entropy. As a consequence, it preserves the collisional invariants and its stationary solutions are the discrete Maxwellians. We consider both the whole velocity-space problem and the bounded velocity problem. In the latter case, we provide artificial boundary conditions which preserve the decay of the entropy.
引用
收藏
页码:239 / 262
页数:24
相关论文
共 14 条
[1]   ON THE CONNECTION BETWEEN A SOLUTION OF THE BOLTZMANN-EQUATION AND A SOLUTION OF THE LANDAU-FOKKER-PLANCK EQUATION [J].
ARSENEV, AA ;
BURYAK, OE .
MATHEMATICS OF THE USSR-SBORNIK, 1991, 69 (02) :465-478
[2]   CONSERVATIVE FINITE-DIFFERENCE SCHEMES FOR THE FOKKER-PLANCK EQUATION NOT VIOLATING THE LAW OF AN INCREASING ENTROPY [J].
BEREZIN, YA ;
KHUDICK, VN ;
PEKKER, MS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 69 (01) :163-174
[3]  
BOBILEV AV, 1981, USSR COMP MATH MATH, V20, P190
[4]  
Cercignani C., 1988, BOLTZMANN EQUATION I
[5]  
Degond P., 1992, Mathematical Models & Methods in Applied Sciences, V2, P167, DOI 10.1142/S0218202592000119
[6]  
Desvillettes L., 1992, Transport Theory and Statistical Physics, V21, P259, DOI 10.1080/00411459208203923
[7]   ON THE FOKKER-PLANCK-BOLTZMANN EQUATION [J].
DIPERNA, RJ ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 120 (01) :1-23
[8]  
Krall N. A., 1973, PRINCIPLES PLASMA PH
[9]  
LIONS PL, 1992, IN PRESS PHIL T ROY
[10]  
LUCQUINDESREUX B, 1992, CR ACAD SCI I-MATH, V314, P407