THE PHASE FORMALISM FOR THE ONE-DIMENSIONAL EIGENVALUE PROBLEM AND ITS RELATION WITH THE QUANTUM BOHR-SOMMERFELD RULE

被引:28
作者
ABARENOV, AV
STOLYAROV, AV
机构
[1] General Physics Institute, Academy of Sciences of the USSR, 117942 Moscow
关键词
D O I
10.1088/0953-4075/23/15/010
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A quantum phase formalism is offered for searching for eigenvalues of the one-dimensional Schrodinger equation. Its application in the shooting method appreciably sped up convergence and made it absolute. The introduced quantum phase functions are close to their semiclassical analogues, unlike those used before, and transform into them in the semiclassical limit. A form of quantum analogue of the Bohr-Sommerfeld quantisation rule, allowing it to operate with non-integer quantum numbers within the framework of precise quantum consideration is obtained.
引用
收藏
页码:2419 / 2426
页数:8
相关论文
共 9 条
[1]   AN IMPROVED SHOOTING METHOD FOR ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
BLENSKI, T ;
LIGOU, J .
COMPUTER PHYSICS COMMUNICATIONS, 1988, 50 (03) :303-311
[2]  
Cooley J. W., 1961, MATH COMPUT, V15, P363, DOI [10.2307/2003025, DOI 10.2307/2003025]
[4]  
JOHNSON BR, 1977, J CHEM PHYS, V67, P4086, DOI 10.1063/1.435384
[5]  
LANDAU LD, 1965, QUANTUM MECHANICS
[6]  
Numerov B.V., 1923, PUBL OBS CENTRAL AST, V2, P188
[7]   EIGENVALUE CORRECTION ESTIMATES FOR THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
TALMAN, JD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 37 (01) :19-40
[8]  
UVAROV VB, 1967, J COMPUT MATH MATH P, V7, P436
[9]   COMPARISON OF 3 NUMERICAL TECHNIQUES FOR CALCULATING EIGENVALUES OF AN UNSYMMETRICAL DOUBLE MINIMUM OSCILLATOR [J].
WICKE, BG ;
HARRIS, DO .
JOURNAL OF CHEMICAL PHYSICS, 1976, 64 (12) :5236-5242