ABSORBING BOUNDARY IN ONE-DIMENSIONAL ANOMALOUS TRANSPORT

被引:62
作者
ZUMOFEN, G [1 ]
KLAFTER, J [1 ]
机构
[1] TEL AVIV UNIV, SCH CHEM, IL-69978 TEL AVIV, ISRAEL
关键词
D O I
10.1103/PhysRevE.51.2805
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper we study the space-time probability distribution Q(x,t) of a random walk subject to an absorbing boundary at the origin x=0 for motion controlled by Lévy flights and Lévy walks characterized by the exponent γ. We find that the method of images, usually applicable to Brownian motion, may break down for Lévy processes. We calculate the distribution Q(x,t) to be at x>0 after time t>0 having started at the origin assuming that the boundary is effective at time t>0. We show that Q(x,t) depends on the details of the underlying process, Q(x,t)∼xγ/2/ t1+1/γ, 1≤γ≤2 for small x, while total survival is independent of the spatial realization of motion and displays a universal behavior. We also discuss the related Smoluchowski boundary condition problem. © 1995 The American Physical Society.
引用
收藏
页码:2805 / 2814
页数:10
相关论文
共 22 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
CARLSLAW HS, 1978, CONDUCTION HEAT SOLI
[3]  
Feller W., 1971, INTRO PROBABILITY TH, V2
[4]  
FREFAN G, 1994, PHYS REV E, V50, P2564
[5]  
FRISCH U, LEVY FLIGHTS APPLICA
[6]   STATISTICAL PROPERTIES OF THE DISTANCE BETWEEN A TRAPPING CENTER AND A UNIFORM DENSITY OF DIFFUSING PARTICLES IN 2 DIMENSIONS [J].
HAVLIN, S ;
LARRALDE, H ;
KOPELMAN, R ;
WEISS, GH .
PHYSICA A, 1990, 169 (03) :337-341
[7]  
HENRICI P, 1986, APPLIED COMPUTATIONA
[8]  
IVANOV VV, 1994, ASTRON ASTROPHYS, V286, P328
[9]   LEVY STATISTICS IN A HAMILTONIAN SYSTEM [J].
KLAFTER, J ;
ZUMOFEN, G .
PHYSICAL REVIEW E, 1994, 49 (06) :4873-4877
[10]   NON-BROWNIAN TRANSPORT IN COMPLEX-SYSTEMS [J].
KLAFTER, J ;
ZUMOFEN, G ;
BLUMEN, A .
CHEMICAL PHYSICS, 1993, 177 (03) :821-829