INVERSE SOLUTION FOR SOME TRAVELING-WAVE REACTION DIFFUSION-PROBLEMS

被引:6
作者
BORZI, C
FRISCH, HL
GIANOTTI, R
PERCUS, JK
机构
[1] IFLYSIB, RA-1800 LA PLATA, ARGENTINA
[2] NYU, COURANT INST MATH SCI, NEW YORK, NY 10012 USA
[3] NYU, DEPT PHYS, NEW YORK, NY 10021 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 21期
关键词
D O I
10.1088/0305-4470/23/21/022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The authors obtain a novel infinite parametric class of exact, stable travelling-wave solutions of the one-component, one-dimensional reaction diffusion equation by means of an inverse method. A number of explicit examples are worked out in terms of elementary functions. Some special cases of two-component, travelling-wave, reaction-diffusion problems can be reduced to the one-component case and thus solved by this method.
引用
收藏
页码:4823 / 4830
页数:8
相关论文
共 7 条
[1]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[2]   The wave of advance of advantageous genes [J].
Fisher, RA .
ANNALS OF EUGENICS, 1937, 7 :355-369
[3]  
FREIDLIN M, 1985, ANN MATH STUD, V109, pCH6
[4]   TRAVELING WAVES FOR A MODEL NON-LINEAR REACTION-DIFFUSION SYSTEM [J].
KALIAPPAN, P ;
LAKSHMANAN, M ;
PONNUSWAMY, PK .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (07) :L227-L229
[5]  
Kamke E., 1959, DIFFERENTIALGLEICHUN
[6]  
Kolmogorov A., 1937, BYUL MOSK GOS U SER, V1, P1, DOI DOI 10.1016/B978-0-08-092523-3.50014-9
[7]   DISSIPATIVE STRUCTURES IN A SOLUBLE NONLINEAR REACTION-DIFFUSION SYSTEM [J].
LEFEVER, R ;
HERSCHKOWITZKAUFMAN, M ;
TURNER, JW .
PHYSICS LETTERS A, 1977, 60 (05) :389-391