WAVELET NETWORKS

被引:1505
作者
ZHANG, QG [1 ]
BENVENISTE, A [1 ]
机构
[1] INST NATL RECH INFORMAT & AUTOMAT,INST RECH INFORMAT & SYST ALEATOIRES,F-35042 RENNES,FRANCE
来源
IEEE TRANSACTIONS ON NEURAL NETWORKS | 1992年 / 3卷 / 06期
关键词
Computational methods - Mathematical transformations;
D O I
10.1109/72.165591
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Based on the wavelet transform theory, the new notion of wavelet network is proposed as an alternative to feed-forward neural networks for approximating arbitrary nonlinear functions. An algorithm of backpropagation type is proposed for wavelet network training and experimental results are reported.
引用
收藏
页码:889 / 898
页数:10
相关论文
共 22 条
[1]  
BARRON AR, 1991, IN PRESS IEEE T INFO
[2]  
BENVENISTE A, 1990, APPLICATIONS MATH, V22
[3]  
BURRASCANO P, 1990, APR P ICASSP 90 ALB
[4]  
Carrol S.M., 1989, P IJCNN
[5]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[6]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[7]   PAINLESS NONORTHOGONAL EXPANSIONS [J].
DAUBECHIES, I ;
GROSSMANN, A ;
MEYER, Y .
JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) :1271-1283
[8]  
DAUBECHIES I, 1990, IEEE T INFORMAT THEO, V36
[9]   DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE [J].
GROSSMANN, A ;
MORLET, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (04) :723-736
[10]  
HANNAN EJ, 1988, STATISTICAL THEORY L