HYDROGEN-ATOM AND RELATIVISTIC PI-MESIC ATOM IN N-SPACE DIMENSIONS

被引:208
作者
NIETO, MM
机构
[1] Theoretical Division, Los Alamos Scientific Laboratory, University of California, Los Alamos, New
关键词
D O I
10.1119/1.11976
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We derive in simple analytic closed form the eigenfunctions and eigenenergies for the hydrogen atom in N dimensions. A section is devoted to the specialization to one dimension. Comments are made on the relation to the harmonic oscillator, the ground-state energy per degree of freedom, the raising and lowering operators, and the radial momentum operators. By particular changes of variables, the relativistic pi-mesic atom is solved in the same functional form. © 1979, American Association of Physics Teachers. All rights reserved.
引用
收藏
页码:1067 / 1072
页数:6
相关论文
共 52 条
[1]  
ABARBANEL HDI, 1976, STUDIES MATH PHYSICS, P3
[2]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[3]   CAUTIONARY REMARK ON APPLYING SYMMETRY TECHNIQUES TO COULOMB PROBLEM [J].
AEBERSOLD, D ;
BIEDENHARN, LC .
PHYSICAL REVIEW A, 1977, 15 (02) :441-443
[4]  
ALLILUEV SP, 1958, SOV PHYS JETP-USSR, V6, P156
[5]   SINGULAR POTENTIALS IN ONE DIMENSION [J].
ANDREWS, M .
AMERICAN JOURNAL OF PHYSICS, 1976, 44 (11) :1064-1066
[6]   GROUND STATE OF ONE-DIMENSIONAL HYDROGEN ATOM [J].
ANDREWS, M .
AMERICAN JOURNAL OF PHYSICS, 1966, 34 (12) :1194-&
[7]   DEGENERACY OF THE N-DIMENSIONAL, ISOTROPIC, HARMONIC OSCILLATOR [J].
BAKER, GA .
PHYSICAL REVIEW, 1956, 103 (04) :1119-1120
[8]  
BANDER M, 1966, REV MOD PHYS, V38, P330, DOI 10.1103/RevModPhys.38.330
[9]   GROUP THEORY AND HYDROGEN ATOM .2. [J].
BANDER, M ;
ITZYKSON, C .
REVIEWS OF MODERN PHYSICS, 1966, 38 (02) :346-&
[10]  
BAYM G, 1969, LECTURES QUANTUM MEC, P524