EVOLUTION OF THE INSULIN SUPERFAMILY - CLONING OF A HYBRID INSULIN INSULIN-LIKE GROWTH-FACTOR CDNA FROM AMPHIOXUS

被引:185
作者
CHAN, SJ [1 ]
CAO, QP [1 ]
STEINER, DF [1 ]
机构
[1] UNIV CHICAGO,HOWARD HUGHES MED INST,CHICAGO,IL 60637
关键词
peptide hormones; preproinsulin; protochordate; somatomedin;
D O I
10.1073/pnas.87.23.9319
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although insulin and the insulin-like growth factors (IGFs) share marked similarities in amino acid sequence and biological activity, their evolutionary origins have not been resolved. To investigate this issue, we recently cloned a cDNA encoding an insulin-like peptide (ILP) from a primitive chordate species, amphioxus (Branchiostoma californiensis). The deduced sequence of amphioxus preproILP indicates that it is a hybrid molecule containing features characteristic of both insulin and IGF. Like proinsulin, amphioxus proILP contains a C-peptide, which is flanked by paired basic residues and is probably removed by proteolysis. However, proILP also contains an extended carboxyl-terminal peptide region that can be divided into D and E domains similar to those of proIGF. Sequence comparisons show that the amphioxus ILP A and B domains are equally homologous to those of human insulin and IGF-I and -II. Based on these results and the exon-intron organization of the amphioxus ILP gene, we propose that IGF emerged at a very early stage in vertebrate evolution from an ancestral insulin-type gene.
引用
收藏
页码:9319 / 9323
页数:5
相关论文
共 28 条
[1]  
ADACHI T, 1989, J BIOL CHEM, V264, P7681
[2]   THE STRUCTURE OF 2ZN PIG INSULIN CRYSTALS AT 1.5-A RESOLUTION [J].
BAKER, EN ;
BLUNDELL, TL ;
CUTFIELD, JF ;
CUTFIELD, SM ;
DODSON, EJ ;
DODSON, GG ;
HODGKIN, DMC ;
HUBBARD, RE ;
ISAACS, NW ;
REYNOLDS, CD ;
SAKABE, K ;
SAKABE, N ;
VIJAYAN, NM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1988, 319 (1195) :369-&
[3]   SEQUENCE OF A CDNA CLONE ENCODING HUMAN PREPROINSULIN-LIKE GROWTH FACTOR-II [J].
BELL, GI ;
MERRYWEATHER, JP ;
SANCHEZPESCADOR, R ;
STEMPIEN, MM ;
PRIESTLEY, L ;
SCOTT, J ;
RALL, LB .
NATURE, 1984, 310 (5980) :775-777
[4]   GENERAL METHOD FOR ISOLATION OF HIGH MOLECULAR-WEIGHT DNA FROM EUKARYOTES [J].
BLIN, N ;
STAFFORD, DW .
NUCLEIC ACIDS RESEARCH, 1976, 3 (09) :2303-2308
[5]   INSULIN-LIKE GROWTH-FACTOR - MODEL FOR TERTIARY STRUCTURE ACCOUNTING FOR IMMUNOREACTIVITY AND RECEPTOR-BINDING [J].
BLUNDELL, TL ;
BEDARKAR, S ;
RINDERKNECHT, E ;
HUMBEL, RE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1978, 75 (01) :180-184
[6]  
CADE TJ, 1979, VERTEBRATE LIFE, P21
[7]   NUCLEOTIDE-SEQUENCE AND GROWTH HORMONE-REGULATED EXPRESSION OF SALMON INSULIN-LIKE GROWTH FACTOR-I MESSENGER-RNA [J].
CAO, QP ;
DUGUAY, SJ ;
PLISETSKAYA, E ;
STEINER, DF ;
CHAN, SJ .
MOLECULAR ENDOCRINOLOGY, 1989, 3 (12) :2005-2010
[8]  
CHAN SJ, 1981, J BIOL CHEM, V256, P7579
[9]   ISOLATION OF BIOLOGICALLY-ACTIVE RIBONUCLEIC-ACID FROM SOURCES ENRICHED IN RIBONUCLEASE [J].
CHIRGWIN, JM ;
PRZYBYLA, AE ;
MACDONALD, RJ ;
RUTTER, WJ .
BIOCHEMISTRY, 1979, 18 (24) :5294-5299
[10]   IDENTIFICATION OF A LIGAND-BINDING REGION OF THE HUMAN INSULIN-RECEPTOR ENCODED BY THE 2ND EXON OF THE GENE [J].
DEMEYTS, P ;
GU, JL ;
SHYMKO, RM ;
KAPLAN, BE ;
BELL, GI ;
WHITTAKER, J .
MOLECULAR ENDOCRINOLOGY, 1990, 4 (03) :409-416