MECHANISM OF TRANSCRIPTIONAL ANTIREPRESSION BY GAL4-VP16

被引:88
作者
CROSTON, GE
LAYBOURN, PJ
PARANJAPE, SM
KADONAGA, JT
机构
[1] UNIV CALIF SAN DIEGO, DEPT BIOL, 0322, LA JOLLA, CA 92093 USA
[2] UNIV CALIF SAN DIEGO, CTR MOLEC GENET, LA JOLLA, CA 92093 USA
[3] COLORADO STATE UNIV, DEPT BIOCHEM, FT COLLINS, CO 80523 USA
关键词
TRANSCRIPTIONAL REGULATION; HISTONE H1; CHROMATIN; RNA POLYMERASE-II; INVITRO TRANSCRIPTION;
D O I
10.1101/gad.6.12a.2270
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Promoter- and enhancer-binding factors appear to function by facilitating the transcription reaction as well as by counteracting chromatin-mediated repression (antirepression). We have examined the mechanism by which a hybrid activator, GAL4-VP16, is able to counteract histone H1-mediated repression by using both H1-DNA complexes and reconstituted H1-containing chromatin templates. The GAL4 DNA binding domain alone was sufficient to disrupt local H1-DNA interactions, but a transcriptional activation region was additionally necessary for antirepression. GAL4-VP16-mediated antirepression required an auxiliary factor, denoted as a co-antirepressor, which was partially purified from Drosophila embryos. We have found that the co-antirepressor activity was sensitive to digestion with RNase A. Moreover, total RNA from Drosophila embryos could partially substitute for the co-antirepressor fraction, which indicated that the co-antirepressor may function as a histone acceptor ("histone sink"). These findings suggest a model for gene activation in which sequence-specific transcription factors disrupt H1-DNA interactions at the promoter to facilitate transfer of H1 to a histone acceptor, which then allows access of the basal transcription factors to the DNA template.
引用
收藏
页码:2270 / 2281
页数:12
相关论文
共 58 条
  • [1] THE STRUCTURE OF HISTONE-H1 AND ITS LOCATION IN CHROMATIN
    ALLAN, J
    HARTMAN, PG
    CRANEROBINSON, C
    AVILES, FX
    [J]. NATURE, 1980, 288 (5792) : 675 - 679
  • [2] HISTONE-H1 AND HISTONE-H5 - ONE OR 2 MOLECULES PER NUCLEOSOME
    BATES, DL
    THOMAS, JO
    [J]. NUCLEIC ACIDS RESEARCH, 1981, 9 (22) : 5883 - 5894
  • [3] SELECTIVE-INHIBITION OF ACTIVATED BUT NOT BASAL TRANSCRIPTION BY THE ACIDIC ACTIVATION DOMAIN OF VP16 - EVIDENCE FOR TRANSCRIPTIONAL ADAPTERS
    BERGER, SL
    CRESS, WD
    CRESS, A
    TRIEZENBERG, SJ
    GUARENTE, L
    [J]. CELL, 1990, 61 (07) : 1199 - 1208
  • [4] THE TRANSCRIPTIONALLY-ACTIVE MMTV PROMOTER IS DEPLETED OF HISTONE H1
    BRESNICK, EH
    BUSTIN, M
    MARSAUD, V
    RICHARDFOY, H
    HAGER, GL
    [J]. NUCLEIC ACIDS RESEARCH, 1992, 20 (02) : 273 - 278
  • [5] CHANGES IN CHROMATIN FOLDING IN SOLUTION
    BUTLER, PJG
    THOMAS, JO
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1980, 140 (04) : 505 - 529
  • [6] ACTIVATION OF YEAST POLYMERASE-II TRANSCRIPTION BY HERPESVIRUS VP16 AND GAL4 DERIVATIVES INVITRO
    CHASMAN, DI
    LEATHERWOOD, J
    CAREY, M
    PTASHNE, M
    KORNBERG, RD
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) : 4746 - 4749
  • [7] CONAWAY JW, 1991, J BIOL CHEM, V266, P17721
  • [8] Croston G.E., 1991, Protein Expression and Purification, V2, P162, DOI 10.1016/1046-5928(91)90066-R
  • [9] SEQUENCE-SPECIFIC ANTIREPRESSION OF HISTONE HL-MEDIATED INHIBITION OF BASAL RNA POLYMERASE-II TRANSCRIPTION
    CROSTON, GE
    KERRIGAN, LA
    LIRA, LM
    MARSHAK, DR
    KADONAGA, JT
    [J]. SCIENCE, 1991, 251 (4994) : 643 - 649
  • [10] ACCURATE TRANSCRIPTION INITIATION BY RNA POLYMERASE-II IN A SOLUBLE EXTRACT FROM ISOLATED MAMMALIAN NUCLEI
    DIGNAM, JD
    LEBOVITZ, RM
    ROEDER, RG
    [J]. NUCLEIC ACIDS RESEARCH, 1983, 11 (05) : 1475 - 1489