RENORMALIZATION-GROUP FOR THE OCTAGONAL QUASI-PERIODIC TILING

被引:44
作者
SIRE, C
BELLISSARD, J
机构
[1] CNRS MARSEILLE LUMINY,CTR PHYS THEOR,F-13288 MARSEILLE 9,FRANCE
[2] UNIV AIX MARSEILLE 1,F-13331 MARSEILLE 3,FRANCE
来源
EUROPHYSICS LETTERS | 1990年 / 11卷 / 05期
关键词
D O I
10.1209/0295-5075/11/5/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a renormalization group for a tight-binding Hamiltonian on the standard octagonal tiling. Our method can be generalized to any self-similar quasi-crystal in 2D or even 3D. In the limit of large potentials compared to the hopping parameters, there are numerical evidences that the spectrum is a Cantor set with zero Lebesgue measure. © 1990 The Japan Society of Applied Physics.
引用
收藏
页码:439 / 443
页数:5
相关论文
共 12 条
[1]  
BELLISARD J, IN PRESS COMMUN MATH
[2]  
BELLISSARD J, IN PRESS
[3]   QUASIPERIODIC PATTERNS [J].
DUNEAU, M ;
KATZ, A .
PHYSICAL REVIEW LETTERS, 1985, 54 (25) :2688-2691
[4]  
DUNEAU M, IN PRESS J PHYS A
[5]   THE DIFFRACTION PATTERN OF PROJECTED STRUCTURES [J].
ELSER, V .
ACTA CRYSTALLOGRAPHICA SECTION A, 1986, 42 :36-43
[6]  
KALUGIN PA, 1985, J PHYS LETT-PARIS, V46, pL601, DOI 10.1051/jphyslet:019850046013060100
[7]   LOCALIZATION PROBLEM IN ONE DIMENSION - MAPPING AND ESCAPE [J].
KOHMOTO, M ;
KADANOFF, LP ;
TANG, C .
PHYSICAL REVIEW LETTERS, 1983, 50 (23) :1870-1872
[8]   ELECTRONIC AND VIBRATIONAL-MODES ON A PENROSE LATTICE - LOCALIZED STATES AND BAND-STRUCTURE [J].
KOHMOTO, M ;
SUTHERLAND, B .
PHYSICAL REVIEW B, 1986, 34 (06) :3849-3853
[9]   ELECTRONIC AND VIBRATIONAL-SPECTRA OF TWO-DIMENSIONAL QUASI-CRYSTALS [J].
ODAGAKI, T ;
NGUYEN, D .
PHYSICAL REVIEW B, 1986, 33 (04) :2184-2190
[10]   ONE-DIMENSIONAL SCHRODINGER-EQUATION WITH AN ALMOST PERIODIC POTENTIAL [J].
OSTLUND, S ;
PANDIT, R ;
RAND, D ;
SCHELLNHUBER, HJ ;
SIGGIA, ED .
PHYSICAL REVIEW LETTERS, 1983, 50 (23) :1873-1876